forked from mrq/tortoise-tts
Update docs
This commit is contained in:
parent
86004ad967
commit
16f5d4f625
|
@ -14,19 +14,25 @@ expect ~5 seconds of speech to take ~30 seconds to produce on the latest hardwar
|
||||||
|
|
||||||
## What the heck is this?
|
## What the heck is this?
|
||||||
|
|
||||||
Tortoise TTS is inspired by OpenAI's DALLE, applied to speech data. It is made up of 4 separate models that work together:
|
Tortoise TTS is inspired by OpenAI's DALLE, applied to speech data. It is made up of 4 separate models that work together.
|
||||||
|
These models are all derived from different repositories which are all linked. All the models have been modified
|
||||||
|
for this use case (some substantially so).
|
||||||
|
|
||||||
First, an autoregressive transformer stack predicts discrete speech "tokens" given a text prompt. This model is very
|
First, an autoregressive transformer stack predicts discrete speech "tokens" given a text prompt. This model is very
|
||||||
similar to the GPT model used by DALLE, except it operates on speech data.
|
similar to the GPT model used by DALLE, except it operates on speech data.
|
||||||
|
Based on: [GPT2 from Transformers](https://huggingface.co/docs/transformers/model_doc/gpt2)
|
||||||
|
|
||||||
Next, a CLIP model judges a batch of outputs from the autoregressive transformer against the provided text and stack
|
Next, a CLIP model judges a batch of outputs from the autoregressive transformer against the provided text and stack
|
||||||
ranks the outputs according to most probable. You could use greedy or beam-search decoding but in my experience CLIP
|
ranks the outputs according to most probable. You could use greedy or beam-search decoding but in my experience CLIP
|
||||||
decoding creates considerably better results.
|
decoding creates considerably better results.
|
||||||
|
Based on [CLIP from lucidrains](https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py)
|
||||||
|
|
||||||
Next, the speech "tokens" are decoded into a low-quality MEL spectrogram using a VQVAE.
|
Next, the speech "tokens" are decoded into a low-quality MEL spectrogram using a VQVAE.
|
||||||
|
Based on [VQVAE2 by rosinality](https://github.com/rosinality/vq-vae-2-pytorch)
|
||||||
|
|
||||||
Finally, the output of the VQVAE is further decoded by a UNet diffusion model into raw audio, which can be placed in
|
Finally, the output of the VQVAE is further decoded by a UNet diffusion model into raw audio, which can be placed in
|
||||||
a wav file.
|
a wav file.
|
||||||
|
Based on [ImprovedDiffusion by openai](https://github.com/openai/improved-diffusion)
|
||||||
|
|
||||||
## How do I use this?
|
## How do I use this?
|
||||||
|
|
||||||
|
|
184
do_tts.py
184
do_tts.py
|
@ -25,25 +25,7 @@ def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusi
|
||||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps))
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps))
|
||||||
|
|
||||||
|
|
||||||
def do_spectrogram_diffusion(diffusion_model, dvae_model, diffuser, mel_codes, conditioning_input, spectrogram_compression_factor=128):
|
def load_conditioning(path, sample_rate=22050, cond_length=132300):
|
||||||
"""
|
|
||||||
Uses the specified diffusion model and DVAE model to convert the provided MEL & conditioning inputs into an audio clip.
|
|
||||||
"""
|
|
||||||
with torch.no_grad():
|
|
||||||
mel = dvae_model.decode(mel_codes)[0]
|
|
||||||
|
|
||||||
# Pad MEL to multiples of 2048//spectrogram_compression_factor
|
|
||||||
msl = mel.shape[-1]
|
|
||||||
dsl = 2048 // spectrogram_compression_factor
|
|
||||||
gap = dsl - (msl % dsl)
|
|
||||||
if gap > 0:
|
|
||||||
mel = torch.nn.functional.pad(mel, (0, gap))
|
|
||||||
|
|
||||||
output_shape = (mel.shape[0], 1, mel.shape[-1] * spectrogram_compression_factor)
|
|
||||||
return diffuser.p_sample_loop(diffusion_model, output_shape, model_kwargs={'spectrogram': mel, 'conditioning_input': conditioning_input})
|
|
||||||
|
|
||||||
|
|
||||||
def load_conditioning(path, sample_rate=22050, cond_length=44100):
|
|
||||||
rel_clip = load_audio(path, sample_rate)
|
rel_clip = load_audio(path, sample_rate)
|
||||||
gap = rel_clip.shape[-1] - cond_length
|
gap = rel_clip.shape[-1] - cond_length
|
||||||
if gap < 0:
|
if gap < 0:
|
||||||
|
@ -82,86 +64,122 @@ def fix_autoregressive_output(codes, stop_token):
|
||||||
return codes
|
return codes
|
||||||
|
|
||||||
|
|
||||||
|
def do_spectrogram_diffusion(diffusion_model, dvae_model, diffuser, mel_codes, conditioning_input, spectrogram_compression_factor=128, mean=False):
|
||||||
|
"""
|
||||||
|
Uses the specified diffusion model and DVAE model to convert the provided MEL & conditioning inputs into an audio clip.
|
||||||
|
"""
|
||||||
|
with torch.no_grad():
|
||||||
|
mel = dvae_model.decode(mel_codes)[0]
|
||||||
|
|
||||||
|
# Pad MEL to multiples of 2048//spectrogram_compression_factor
|
||||||
|
msl = mel.shape[-1]
|
||||||
|
dsl = 2048 // spectrogram_compression_factor
|
||||||
|
gap = dsl - (msl % dsl)
|
||||||
|
if gap > 0:
|
||||||
|
mel = torch.nn.functional.pad(mel, (0, gap))
|
||||||
|
|
||||||
|
output_shape = (mel.shape[0], 1, mel.shape[-1] * spectrogram_compression_factor)
|
||||||
|
if mean:
|
||||||
|
return diffuser.p_sample_loop(diffusion_model, output_shape, noise=torch.zeros(output_shape, device=mel_codes.device),
|
||||||
|
model_kwargs={'spectrogram': mel, 'conditioning_input': conditioning_input})
|
||||||
|
else:
|
||||||
|
return diffuser.p_sample_loop(diffusion_model, output_shape, model_kwargs={'spectrogram': mel, 'conditioning_input': conditioning_input})
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
# These are voices drawn randomly from the training set. You are free to substitute your own voices in, but testing
|
||||||
|
# has shown that the model does not generalize to new voices very well.
|
||||||
preselected_cond_voices = {
|
preselected_cond_voices = {
|
||||||
'simmons': ['Y:\\clips\\books1\\754_Dan Simmons - The Rise Of Endymion 356 of 450\\00026.wav'],
|
# Male voices
|
||||||
'news_girl': ['Y:\\clips\\podcasts-0\\8288_20210113-Is More Violence Coming_\\00022.wav', 'Y:\\clips\\podcasts-0\\8288_20210113-Is More Violence Coming_\\00016.wav'],
|
'dotrice': ['voices/dotrice/1.wav', 'voices/dotrice/2.wav'],
|
||||||
'dan_carlin': ['Y:\\clips\\books1\\5_dchha06 Shield of the West\\00476.wav', 'Y:\\clips\\books1\\15_dchha16 Nazi Tidbits\\00036.wav'],
|
'harris': ['voices/male_harris1.wav', 'voices/male_harris2.wav'],
|
||||||
'libri_test': ['Y:\\libritts\\test-clean\\672\\122797\\672_122797_000057_000002.wav'],
|
'lescault': ['voices/male_lescault1.wav', 'voices/male_lescault2.wav'],
|
||||||
|
'otto': ['voices/male_otto1.wav', 'voices/male_otto2.wav'],
|
||||||
|
# Female voices
|
||||||
|
'atkins': ['voices/female_atkins1.wav', 'voices/female_atkins2.wav'],
|
||||||
|
'grace': ['voices/female_grace1.wav', 'voices/female_grace2.wav'],
|
||||||
|
'kennard': ['voices/female_kennard1.wav', 'voices/female_kennard2.wav'],
|
||||||
|
'mol': ['voices/female_mol1.wav', 'voices/female_mol2.wav'],
|
||||||
}
|
}
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('-autoregressive_model_path', type=str, help='Autoregressive model checkpoint to load.', default='.models/unified_voice.pth')
|
parser.add_argument('-autoregressive_model_path', type=str, help='Autoregressive model checkpoint to load.', default='.models/unified_voice.pth')
|
||||||
parser.add_argument('-clip_model_path', type=str, help='CLIP model checkpoint to load.', default='.models/clip.pth')
|
parser.add_argument('-clip_model_path', type=str, help='CLIP model checkpoint to load.', default='.models/clip.pth')
|
||||||
parser.add_argument('-diffusion_model_path', type=str, help='Diffusion model checkpoint to load.', default='./models/diffusion_vocoder.pth')
|
parser.add_argument('-diffusion_model_path', type=str, help='Diffusion model checkpoint to load.', default='.models/diffusion_vocoder.pth')
|
||||||
parser.add_argument('-dvae_model_path', type=str, help='DVAE model checkpoint to load.', default='./models/dvae.pth')
|
parser.add_argument('-dvae_model_path', type=str, help='DVAE model checkpoint to load.', default='.models/dvae.pth')
|
||||||
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
||||||
parser.add_argument('-cond_preset', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dan_carlin')
|
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
||||||
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=32)
|
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=512)
|
||||||
parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=2)
|
parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=16)
|
||||||
parser.add_argument('-num_outputs', type=int, help='Number of outputs to produce.', default=2)
|
parser.add_argument('-num_outputs', type=int, help='Number of outputs to produce.', default=2)
|
||||||
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
|
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
os.makedirs(args.output_path, exist_ok=True)
|
os.makedirs(args.output_path, exist_ok=True)
|
||||||
|
|
||||||
print("Loading GPT TTS..")
|
for voice in args.voice.split(','):
|
||||||
autoregressive = UnifiedVoice(max_mel_tokens=300, max_text_tokens=200, max_conditioning_inputs=2, layers=30, model_dim=1024, heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False, train_solo_embeddings=False).eval()
|
print("Loading GPT TTS..")
|
||||||
autoregressive.load_state_dict(torch.load(args.autoregressive_model_path))
|
autoregressive = UnifiedVoice(max_mel_tokens=300, max_text_tokens=200, max_conditioning_inputs=2, layers=30, model_dim=1024,
|
||||||
stop_mel_token = autoregressive.stop_mel_token
|
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False, train_solo_embeddings=False).cuda().eval()
|
||||||
|
autoregressive.load_state_dict(torch.load(args.autoregressive_model_path))
|
||||||
|
stop_mel_token = autoregressive.stop_mel_token
|
||||||
|
|
||||||
print("Loading data..")
|
print("Loading data..")
|
||||||
tokenizer = VoiceBpeTokenizer()
|
tokenizer = VoiceBpeTokenizer()
|
||||||
text = torch.IntTensor(tokenizer.encode(args.text)).unsqueeze(0).cuda()
|
text = torch.IntTensor(tokenizer.encode(args.text)).unsqueeze(0).cuda()
|
||||||
text = F.pad(text, (0,1)) # This may not be necessary.
|
text = F.pad(text, (0,1)) # This may not be necessary.
|
||||||
cond_paths = preselected_cond_voices[args.cond_preset]
|
cond_paths = preselected_cond_voices[voice]
|
||||||
conds = []
|
conds = []
|
||||||
for cond_path in cond_paths:
|
for cond_path in cond_paths:
|
||||||
c, cond_wav = load_conditioning(cond_path, cond_length=132300)
|
c, cond_wav = load_conditioning(cond_path)
|
||||||
conds.append(c)
|
conds.append(c)
|
||||||
conds = torch.stack(conds, dim=1) # And just use the last cond_wav for the diffusion model.
|
conds = torch.stack(conds, dim=1) # And just use the last cond_wav for the diffusion model.
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
print("Performing GPT inference..")
|
print("Performing autoregressive inference..")
|
||||||
samples = []
|
samples = []
|
||||||
for b in tqdm(range(args.num_batches)):
|
for b in tqdm(range(args.num_batches)):
|
||||||
codes = autoregressive.inference_speech(conds, text, num_beams=1, repetition_penalty=1.0, do_sample=True, top_k=50, top_p=.95,
|
codes = autoregressive.inference_speech(conds, text, num_beams=1, repetition_penalty=1.0, do_sample=True, top_k=50, top_p=.95,
|
||||||
temperature=.9, num_return_sequences=args.num_samples//args.num_batches, length_penalty=1)
|
temperature=.9, num_return_sequences=args.num_samples//args.num_batches, length_penalty=1)
|
||||||
padding_needed = 250 - codes.shape[1]
|
padding_needed = 250 - codes.shape[1]
|
||||||
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
||||||
samples.append(codes)
|
samples.append(codes)
|
||||||
samples = torch.cat(samples, dim=0)
|
del autoregressive
|
||||||
del autoregressive
|
|
||||||
|
|
||||||
print("Loading CLIP..")
|
print("Loading CLIP..")
|
||||||
clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=8, text_seq_len=120, text_heads=8,
|
clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=8, text_seq_len=120, text_heads=8,
|
||||||
num_speech_tokens=8192, speech_enc_depth=10, speech_heads=8, speech_seq_len=250).eval()
|
num_speech_tokens=8192, speech_enc_depth=10, speech_heads=8, speech_seq_len=250).cuda().eval()
|
||||||
clip.load_state_dict(torch.load(args.clip_model_path))
|
clip.load_state_dict(torch.load(args.clip_model_path))
|
||||||
print("Performing CLIP filtering..")
|
print("Performing CLIP filtering..")
|
||||||
for i in range(samples.shape[0]):
|
clip_results = []
|
||||||
samples[i] = fix_autoregressive_output(samples[i], stop_mel_token)
|
for batch in samples:
|
||||||
clip_results = clip(text.repeat(samples.shape[0], 1),
|
for i in range(batch.shape[0]):
|
||||||
torch.full((samples.shape[0],), fill_value=text.shape[1]-1, dtype=torch.long, device='cuda'),
|
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
||||||
samples, torch.full((samples.shape[0],), fill_value=samples.shape[1]*1024, dtype=torch.long, device='cuda'),
|
text = text[:, :120] # Ugly hack to fix the fact that I didn't train CLIP to handle long enough text.
|
||||||
return_loss=False)
|
clip_results.append(clip(text.repeat(batch.shape[0], 1),
|
||||||
best_results = samples[torch.topk(clip_results, k=args.num_outputs).indices]
|
torch.full((batch.shape[0],), fill_value=text.shape[1]-1, dtype=torch.long, device='cuda'),
|
||||||
|
batch, torch.full((batch.shape[0],), fill_value=batch.shape[1]*1024, dtype=torch.long, device='cuda'),
|
||||||
|
return_loss=False))
|
||||||
|
clip_results = torch.cat(clip_results, dim=0)
|
||||||
|
samples = torch.cat(samples, dim=0)
|
||||||
|
best_results = samples[torch.topk(clip_results, k=args.num_outputs).indices]
|
||||||
|
|
||||||
# Delete the autoregressive and clip models to free up GPU memory
|
# Delete the autoregressive and clip models to free up GPU memory
|
||||||
del samples, clip
|
del samples, clip
|
||||||
|
|
||||||
print("Loading DVAE..")
|
print("Loading DVAE..")
|
||||||
dvae = DiscreteVAE(positional_dims=1, channels=80, hidden_dim=512, num_resnet_blocks=3, codebook_dim=512, num_tokens=8192, num_layers=2,
|
dvae = DiscreteVAE(positional_dims=1, channels=80, hidden_dim=512, num_resnet_blocks=3, codebook_dim=512, num_tokens=8192, num_layers=2,
|
||||||
record_codes=True, kernel_size=3, use_transposed_convs=False).eval()
|
record_codes=True, kernel_size=3, use_transposed_convs=False).cuda().eval()
|
||||||
dvae.load_state_dict(torch.load(args.dvae_model_path))
|
dvae.load_state_dict(torch.load(args.dvae_model_path))
|
||||||
print("Loading Diffusion Model..")
|
print("Loading Diffusion Model..")
|
||||||
diffusion = DiscreteDiffusionVocoder(model_channels=128, dvae_dim=80, channel_mult=[1, 1, 1.5, 2, 3, 4, 6, 8, 8, 8, 8], num_res_blocks=[1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1],
|
diffusion = DiscreteDiffusionVocoder(model_channels=128, dvae_dim=80, channel_mult=[1, 1, 1.5, 2, 3, 4, 6, 8, 8, 8, 8], num_res_blocks=[1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1],
|
||||||
spectrogram_conditioning_resolutions=[2,512], attention_resolutions=[512,1024], num_heads=4, kernel_size=3, scale_factor=2,
|
spectrogram_conditioning_resolutions=[2,512], attention_resolutions=[512,1024], num_heads=4, kernel_size=3, scale_factor=2,
|
||||||
conditioning_inputs_provided=True, time_embed_dim_multiplier=4).eval()
|
conditioning_inputs_provided=True, time_embed_dim_multiplier=4).cuda().eval()
|
||||||
diffusion.load_state_dict(torch.load(args.diffusion_model_path))
|
diffusion.load_state_dict(torch.load(args.diffusion_model_path))
|
||||||
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=100)
|
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=100)
|
||||||
|
|
||||||
print("Performing vocoding..")
|
print("Performing vocoding..")
|
||||||
# Perform vocoding on each batch element separately: Vocoding is very memory (and compute!) intensive.
|
# Perform vocoding on each batch element separately: The diffusion model is very memory (and compute!) intensive.
|
||||||
for b in range(best_results.shape[0]):
|
for b in range(best_results.shape[0]):
|
||||||
code = best_results[b].unsqueeze(0)
|
code = best_results[b].unsqueeze(0)
|
||||||
wav = do_spectrogram_diffusion(diffusion, dvae, diffuser, code, cond_wav, spectrogram_compression_factor=256)
|
wav = do_spectrogram_diffusion(diffusion, dvae, diffuser, code, cond_wav, spectrogram_compression_factor=256, mean=True)
|
||||||
torchaudio.save(os.path.join(args.output_path, f'gpt_tts_output_{b}.wav'), wav.squeeze(0).cpu(), 22050)
|
torchaudio.save(os.path.join(args.output_path, f'{voice}_{b}.wav'), wav.squeeze(0).cpu(), 22050)
|
||||||
|
|
|
@ -1,5 +1,7 @@
|
||||||
import torch
|
import torch
|
||||||
import torchaudio
|
import torchaudio
|
||||||
|
import numpy as np
|
||||||
|
from scipy.io.wavfile import read
|
||||||
|
|
||||||
|
|
||||||
def load_wav_to_torch(full_path):
|
def load_wav_to_torch(full_path):
|
||||||
|
|
Loading…
Reference in New Issue
Block a user