forked from mrq/tortoise-tts
Move everything into the tortoise/ subdirectory
For eventual packaging.
This commit is contained in:
parent
9c35b73a1f
commit
23a3d5d00b
|
@ -1,38 +0,0 @@
|
|||
import os
|
||||
|
||||
import torchaudio
|
||||
|
||||
from api import TextToSpeech
|
||||
from utils.audio import load_audio
|
||||
|
||||
if __name__ == '__main__':
|
||||
fname = 'Y:\\clips\\books2\\subset512-oco.tsv'
|
||||
stop_after = 128
|
||||
outpath_base = 'D:\\tmp\\tortoise-tts-eval\\audiobooks'
|
||||
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
||||
|
||||
os.makedirs(outpath_real, exist_ok=True)
|
||||
with open(fname, 'r', encoding='utf-8') as f:
|
||||
lines = [l.strip().split('\t') for l in f.readlines()]
|
||||
|
||||
tts = TextToSpeech()
|
||||
for k in range(3):
|
||||
outpath = f'{outpath_base}_{k}'
|
||||
os.makedirs(outpath, exist_ok=True)
|
||||
recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
|
||||
for e, line in enumerate(lines):
|
||||
if e >= stop_after:
|
||||
break
|
||||
transcript = line[0]
|
||||
path = os.path.join(os.path.dirname(fname), line[1])
|
||||
cond_audio = load_audio(path, 22050)
|
||||
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
||||
sample = tts.tts_with_preset(transcript, [cond_audio, cond_audio], preset='standard')
|
||||
|
||||
down = torchaudio.functional.resample(sample, 24000, 22050)
|
||||
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
||||
torchaudio.save(fout_path, down.squeeze(0), 22050)
|
||||
|
||||
recorder.write(f'{transcript}\t{fout_path}\n')
|
||||
recorder.flush()
|
||||
recorder.close()
|
133
models/cvvp.py
133
models/cvvp.py
|
@ -1,133 +0,0 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import einsum
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from models.arch_util import AttentionBlock
|
||||
from models.xtransformers import ContinuousTransformerWrapper, Encoder
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def masked_mean(t, mask):
|
||||
t = t.masked_fill(~mask, 0.)
|
||||
return t.sum(dim = 1) / mask.sum(dim = 1)
|
||||
|
||||
|
||||
class CollapsingTransformer(nn.Module):
|
||||
def __init__(self, model_dim, output_dims, heads, dropout, depth, mask_percentage=0, **encoder_kwargs):
|
||||
super().__init__()
|
||||
self.transformer = ContinuousTransformerWrapper(
|
||||
max_seq_len=-1,
|
||||
use_pos_emb=False,
|
||||
attn_layers=Encoder(
|
||||
dim=model_dim,
|
||||
depth=depth,
|
||||
heads=heads,
|
||||
ff_dropout=dropout,
|
||||
ff_mult=1,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
**encoder_kwargs,
|
||||
))
|
||||
self.pre_combiner = nn.Sequential(nn.Conv1d(model_dim, output_dims, 1),
|
||||
AttentionBlock(output_dims, num_heads=heads, do_checkpoint=False),
|
||||
nn.Conv1d(output_dims, output_dims, 1))
|
||||
self.mask_percentage = mask_percentage
|
||||
|
||||
def forward(self, x, **transformer_kwargs):
|
||||
h = self.transformer(x, **transformer_kwargs)
|
||||
h = h.permute(0,2,1)
|
||||
h = checkpoint(self.pre_combiner, h).permute(0,2,1)
|
||||
if self.training:
|
||||
mask = torch.rand_like(h.float()) > self.mask_percentage
|
||||
else:
|
||||
mask = torch.ones_like(h.float()).bool()
|
||||
return masked_mean(h, mask)
|
||||
|
||||
|
||||
class ConvFormatEmbedding(nn.Module):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__()
|
||||
self.emb = nn.Embedding(*args, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
y = self.emb(x)
|
||||
return y.permute(0,2,1)
|
||||
|
||||
|
||||
class CVVP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model_dim=512,
|
||||
transformer_heads=8,
|
||||
dropout=.1,
|
||||
conditioning_enc_depth=8,
|
||||
cond_mask_percentage=0,
|
||||
mel_channels=80,
|
||||
mel_codes=None,
|
||||
speech_enc_depth=8,
|
||||
speech_mask_percentage=0,
|
||||
latent_multiplier=1,
|
||||
):
|
||||
super().__init__()
|
||||
latent_dim = latent_multiplier*model_dim
|
||||
self.temperature = nn.Parameter(torch.tensor(1.))
|
||||
|
||||
self.cond_emb = nn.Sequential(nn.Conv1d(mel_channels, model_dim//2, kernel_size=5, stride=2, padding=2),
|
||||
nn.Conv1d(model_dim//2, model_dim, kernel_size=3, stride=2, padding=1))
|
||||
self.conditioning_transformer = CollapsingTransformer(model_dim, model_dim, transformer_heads, dropout, conditioning_enc_depth, cond_mask_percentage)
|
||||
self.to_conditioning_latent = nn.Linear(latent_dim, latent_dim, bias=False)
|
||||
|
||||
if mel_codes is None:
|
||||
self.speech_emb = nn.Conv1d(mel_channels, model_dim, kernel_size=5, padding=2)
|
||||
else:
|
||||
self.speech_emb = ConvFormatEmbedding(mel_codes, model_dim)
|
||||
self.speech_transformer = CollapsingTransformer(model_dim, latent_dim, transformer_heads, dropout, speech_enc_depth, speech_mask_percentage)
|
||||
self.to_speech_latent = nn.Linear(latent_dim, latent_dim, bias=False)
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
return {
|
||||
'conditioning': list(self.conditioning_transformer.parameters()),
|
||||
'speech': list(self.speech_transformer.parameters()),
|
||||
}
|
||||
|
||||
def forward(
|
||||
self,
|
||||
mel_cond,
|
||||
mel_input,
|
||||
return_loss=False
|
||||
):
|
||||
cond_emb = self.cond_emb(mel_cond).permute(0,2,1)
|
||||
enc_cond = self.conditioning_transformer(cond_emb)
|
||||
cond_latents = self.to_conditioning_latent(enc_cond)
|
||||
|
||||
speech_emb = self.speech_emb(mel_input).permute(0,2,1)
|
||||
enc_speech = self.speech_transformer(speech_emb)
|
||||
speech_latents = self.to_speech_latent(enc_speech)
|
||||
|
||||
|
||||
cond_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (cond_latents, speech_latents))
|
||||
temp = self.temperature.exp()
|
||||
|
||||
if not return_loss:
|
||||
sim = einsum('n d, n d -> n', cond_latents, speech_latents) * temp
|
||||
return sim
|
||||
|
||||
sim = einsum('i d, j d -> i j', cond_latents, speech_latents) * temp
|
||||
labels = torch.arange(cond_latents.shape[0], device=mel_input.device)
|
||||
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
clvp = CVVP()
|
||||
clvp(torch.randn(2,80,100),
|
||||
torch.randn(2,80,95),
|
||||
return_loss=True)
|
65
sweep.py
65
sweep.py
|
@ -1,65 +0,0 @@
|
|||
import os
|
||||
from random import shuffle
|
||||
|
||||
import torchaudio
|
||||
|
||||
from api import TextToSpeech
|
||||
from utils.audio import load_audio
|
||||
|
||||
|
||||
def permutations(args):
|
||||
res = []
|
||||
k = next(iter(args.keys()))
|
||||
vals = args[k]
|
||||
del args[k]
|
||||
if not args:
|
||||
return [{k: v} for v in vals]
|
||||
lower = permutations(args)
|
||||
for v in vals:
|
||||
for l in lower:
|
||||
lc = l.copy()
|
||||
lc[k] = v
|
||||
res.append(lc)
|
||||
return res
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
fname = 'Y:\\clips\\books2\\subset512-oco.tsv'
|
||||
stop_after = 512
|
||||
outpath_base = 'D:\\tmp\\tortoise-tts-eval\\sweep-2'
|
||||
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
||||
|
||||
arg_ranges = {
|
||||
'top_p': [.8,1],
|
||||
'temperature': [.8,.9,1],
|
||||
'diffusion_temperature': [.8,1],
|
||||
'cond_free_k': [1,2,5,10],
|
||||
}
|
||||
cfgs = permutations(arg_ranges)
|
||||
shuffle(cfgs)
|
||||
|
||||
for cfg in cfgs:
|
||||
cfg_desc = '_'.join([f'{k}-{v}' for k,v in cfg.items()])
|
||||
outpath = os.path.join(outpath_base, f'{cfg_desc}')
|
||||
os.makedirs(outpath, exist_ok=True)
|
||||
os.makedirs(outpath_real, exist_ok=True)
|
||||
with open(fname, 'r', encoding='utf-8') as f:
|
||||
lines = [l.strip().split('\t') for l in f.readlines()]
|
||||
|
||||
recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
|
||||
tts = TextToSpeech()
|
||||
for e, line in enumerate(lines):
|
||||
if e >= stop_after:
|
||||
break
|
||||
transcript = line[0]
|
||||
path = os.path.join(os.path.dirname(fname), line[1])
|
||||
cond_audio = load_audio(path, 22050)
|
||||
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
||||
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=32, repetition_penalty=2.0,
|
||||
k=1, diffusion_iterations=32, length_penalty=1.0, **cfg)
|
||||
down = torchaudio.functional.resample(sample, 24000, 22050)
|
||||
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
||||
torchaudio.save(fout_path, down.squeeze(0), 22050)
|
||||
recorder.write(f'{transcript}\t{fout_path}\n')
|
||||
recorder.flush()
|
||||
recorder.close()
|
|
@ -1,4 +1,3 @@
|
|||
import argparse
|
||||
import os
|
||||
import random
|
||||
from urllib import request
|
||||
|
@ -8,19 +7,18 @@ import torch.nn.functional as F
|
|||
import progressbar
|
||||
import torchaudio
|
||||
|
||||
from models.classifier import AudioMiniEncoderWithClassifierHead
|
||||
from models.cvvp import CVVP
|
||||
from models.diffusion_decoder import DiffusionTts
|
||||
from models.autoregressive import UnifiedVoice
|
||||
from tortoise.models.classifier import AudioMiniEncoderWithClassifierHead
|
||||
from tortoise.models.cvvp import CVVP
|
||||
from tortoise.models.diffusion_decoder import DiffusionTts
|
||||
from tortoise.models.autoregressive import UnifiedVoice
|
||||
from tqdm import tqdm
|
||||
|
||||
from models.arch_util import TorchMelSpectrogram
|
||||
from models.clvp import CLVP
|
||||
from models.vocoder import UnivNetGenerator
|
||||
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
|
||||
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
||||
from utils.tokenizer import VoiceBpeTokenizer, lev_distance
|
||||
|
||||
from tortoise.models.arch_util import TorchMelSpectrogram
|
||||
from tortoise.models.clvp import CLVP
|
||||
from tortoise.models.vocoder import UnivNetGenerator
|
||||
from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel
|
||||
from tortoise.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
||||
from tortoise.utils.tokenizer import VoiceBpeTokenizer
|
||||
|
||||
pbar = None
|
||||
|
|
@ -4,7 +4,7 @@ import os
|
|||
import torchaudio
|
||||
|
||||
from api import TextToSpeech
|
||||
from utils.audio import load_audio, get_voices
|
||||
from tortoise.utils.audio import load_audio, get_voices
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
|
@ -1,7 +1,7 @@
|
|||
import argparse
|
||||
|
||||
from api import classify_audio_clip
|
||||
from utils.audio import load_audio
|
||||
from tortoise.utils.audio import load_audio
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
|
@ -5,7 +5,7 @@ import torch
|
|||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
from models.xtransformers import ContinuousTransformerWrapper, RelativePositionBias
|
||||
from tortoise.models.xtransformers import ContinuousTransformerWrapper, RelativePositionBias
|
||||
|
||||
|
||||
def zero_module(module):
|
|
@ -6,8 +6,8 @@ import torch.nn.functional as F
|
|||
from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList
|
||||
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
||||
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
|
||||
from models.arch_util import AttentionBlock
|
||||
from utils.typical_sampling import TypicalLogitsWarper
|
||||
from tortoise.models.arch_util import AttentionBlock
|
||||
from tortoise.utils.typical_sampling import TypicalLogitsWarper
|
||||
|
||||
|
||||
def null_position_embeddings(range, dim):
|
|
@ -1,9 +1,8 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from models.arch_util import Upsample, Downsample, normalization, zero_module, AttentionBlock
|
||||
from tortoise.models.arch_util import Upsample, Downsample, normalization, zero_module, AttentionBlock
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
|
@ -3,9 +3,9 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
from torch import einsum
|
||||
|
||||
from models.arch_util import CheckpointedXTransformerEncoder
|
||||
from models.transformer import Transformer
|
||||
from models.xtransformers import Encoder
|
||||
from tortoise.models.arch_util import CheckpointedXTransformerEncoder
|
||||
from tortoise.models.transformer import Transformer
|
||||
from tortoise.models.xtransformers import Encoder
|
||||
|
||||
|
||||
def exists(val):
|
|
@ -7,7 +7,7 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
from torch import autocast
|
||||
|
||||
from models.arch_util import normalization, AttentionBlock
|
||||
from tortoise.models.arch_util import normalization, AttentionBlock
|
||||
|
||||
|
||||
def is_latent(t):
|
|
@ -2,12 +2,10 @@ import argparse
|
|||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
|
||||
from api import TextToSpeech, format_conditioning
|
||||
from utils.audio import load_audio, get_voices
|
||||
from utils.tokenizer import VoiceBpeTokenizer
|
||||
from api import TextToSpeech
|
||||
from tortoise.utils.audio import load_audio, get_voices
|
||||
|
||||
|
||||
def split_and_recombine_text(texts, desired_length=200, max_len=300):
|
|
@ -4,7 +4,7 @@ import os
|
|||
|
||||
if __name__ == '__main__':
|
||||
result = "<html><head><title>These words were never spoken.</title></head><body><h1>Handpicked results</h1>"
|
||||
for fv in os.listdir('results/favorites'):
|
||||
for fv in os.listdir('../results/favorites'):
|
||||
url = f'https://github.com/neonbjb/tortoise-tts/raw/main/results/favorites/{fv}'
|
||||
result = result + f'<audio controls="" style="width: 600px;"><source src="{url}" type="audio/mp3"></audio><br>\n'
|
||||
|
||||
|
@ -30,7 +30,7 @@ if __name__ == '__main__':
|
|||
line = line + f'<td><audio controls="" style="width: 150px;"><source src="{url}" type="audio/mp3"></audio></td>'
|
||||
line = line + "</tr>"
|
||||
lines.append(line)
|
||||
for txt in os.listdir('results/various/'):
|
||||
for txt in os.listdir('../results/various/'):
|
||||
if 'desktop' in txt:
|
||||
continue
|
||||
line = f'<tr><td>{txt}</td>'
|
||||
|
@ -42,7 +42,7 @@ if __name__ == '__main__':
|
|||
result = result + '\n'.join(lines) + "</table>"
|
||||
|
||||
result = result + "<h1>Longform result for all voices:</h1>"
|
||||
for lf in os.listdir('results/riding_hood'):
|
||||
for lf in os.listdir('../results/riding_hood'):
|
||||
url = f'https://github.com/neonbjb/tortoise-tts/raw/main/results/riding_hood/{lf}'
|
||||
result = result + f'<audio controls="" style="width: 600px;"><source src="{url}" type="audio/mp3"></audio><br>\n'
|
||||
|
0
tortoise/utils/__init__.py
Normal file
0
tortoise/utils/__init__.py
Normal file
|
@ -6,7 +6,7 @@ import torchaudio
|
|||
import numpy as np
|
||||
from scipy.io.wavfile import read
|
||||
|
||||
from utils.stft import STFT
|
||||
from tortoise.utils.stft import STFT
|
||||
|
||||
|
||||
def load_wav_to_torch(full_path):
|
Loading…
Reference in New Issue
Block a user