forked from mrq/tortoise-tts
port do_tts to use the API
This commit is contained in:
parent
6721b85302
commit
d89c51a71c
31
api.py
31
api.py
|
@ -151,10 +151,10 @@ class TextToSpeech:
|
||||||
|
|
||||||
def tts(self, text, voice_samples, k=1,
|
def tts(self, text, voice_samples, k=1,
|
||||||
# autoregressive generation parameters follow
|
# autoregressive generation parameters follow
|
||||||
num_autoregressive_samples=512, temperature=.9, length_penalty=1, repetition_penalty=1.0, top_k=50, top_p=.95,
|
num_autoregressive_samples=512, temperature=.5, length_penalty=2, repetition_penalty=2.0, top_p=.5,
|
||||||
typical_sampling=False, typical_mass=.9,
|
typical_sampling=False, typical_mass=.9,
|
||||||
# diffusion generation parameters follow
|
# diffusion generation parameters follow
|
||||||
diffusion_iterations=100, cond_free=True, cond_free_k=1, diffusion_temperature=1,):
|
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=.7,):
|
||||||
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
||||||
text = F.pad(text, (0, 1)) # This may not be necessary.
|
text = F.pad(text, (0, 1)) # This may not be necessary.
|
||||||
|
|
||||||
|
@ -181,7 +181,6 @@ class TextToSpeech:
|
||||||
for b in tqdm(range(num_batches)):
|
for b in tqdm(range(num_batches)):
|
||||||
codes = self.autoregressive.inference_speech(conds, text,
|
codes = self.autoregressive.inference_speech(conds, text,
|
||||||
do_sample=True,
|
do_sample=True,
|
||||||
top_k=top_k,
|
|
||||||
top_p=top_p,
|
top_p=top_p,
|
||||||
temperature=temperature,
|
temperature=temperature,
|
||||||
num_return_sequences=self.autoregressive_batch_size,
|
num_return_sequences=self.autoregressive_batch_size,
|
||||||
|
@ -220,4 +219,28 @@ class TextToSpeech:
|
||||||
|
|
||||||
if len(wav_candidates) > 1:
|
if len(wav_candidates) > 1:
|
||||||
return wav_candidates
|
return wav_candidates
|
||||||
return wav_candidates[0]
|
return wav_candidates[0]
|
||||||
|
|
||||||
|
def refine_for_intellibility(self, wav_candidates, corresponding_codes, output_path):
|
||||||
|
"""
|
||||||
|
Further refine the remaining candidates using a ASR model to pick out the ones that are the most understandable.
|
||||||
|
TODO: finish this function
|
||||||
|
:param wav_candidates:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
transcriber = ocotillo.Transcriber(on_cuda=True)
|
||||||
|
transcriptions = transcriber.transcribe_batch(torch.cat(wav_candidates, dim=0).squeeze(1), 24000)
|
||||||
|
best = 99999999
|
||||||
|
for i, transcription in enumerate(transcriptions):
|
||||||
|
dist = lev_distance(transcription, args.text.lower())
|
||||||
|
if dist < best:
|
||||||
|
best = dist
|
||||||
|
best_codes = corresponding_codes[i].unsqueeze(0)
|
||||||
|
best_wav = wav_candidates[i]
|
||||||
|
del transcriber
|
||||||
|
torchaudio.save(os.path.join(output_path, f'{voice}_poor.wav'), best_wav.squeeze(0).cpu(), 24000)
|
||||||
|
|
||||||
|
# Perform diffusion again with the high-quality diffuser.
|
||||||
|
mel = do_spectrogram_diffusion(diffusion, final_diffuser, best_codes, cond_diffusion, mean=False)
|
||||||
|
wav = vocoder.inference(mel)
|
||||||
|
torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), wav.squeeze(0).cpu(), 24000)
|
206
do_tts.py
206
do_tts.py
|
@ -1,123 +1,13 @@
|
||||||
import argparse
|
import argparse
|
||||||
import os
|
import os
|
||||||
import random
|
|
||||||
from urllib import request
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import torchaudio
|
import torchaudio
|
||||||
import progressbar
|
|
||||||
import ocotillo
|
|
||||||
|
|
||||||
from models.diffusion_decoder import DiffusionTts
|
|
||||||
from models.autoregressive import UnifiedVoice
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
from models.arch_util import TorchMelSpectrogram
|
|
||||||
from models.text_voice_clip import VoiceCLIP
|
|
||||||
from models.vocoder import UnivNetGenerator
|
|
||||||
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
|
|
||||||
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
|
||||||
from utils.tokenizer import VoiceBpeTokenizer, lev_distance
|
|
||||||
|
|
||||||
pbar = None
|
|
||||||
def download_models():
|
|
||||||
MODELS = {
|
|
||||||
'clip.pth': 'https://huggingface.co/jbetker/tortoise-tts-clip/resolve/main/pytorch-model.bin',
|
|
||||||
'diffusion.pth': 'https://huggingface.co/jbetker/tortoise-tts-diffusion-v1/resolve/main/pytorch-model.bin',
|
|
||||||
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-autoregressive/resolve/main/pytorch-model.bin'
|
|
||||||
}
|
|
||||||
os.makedirs('.models', exist_ok=True)
|
|
||||||
def show_progress(block_num, block_size, total_size):
|
|
||||||
global pbar
|
|
||||||
if pbar is None:
|
|
||||||
pbar = progressbar.ProgressBar(maxval=total_size)
|
|
||||||
pbar.start()
|
|
||||||
|
|
||||||
downloaded = block_num * block_size
|
|
||||||
if downloaded < total_size:
|
|
||||||
pbar.update(downloaded)
|
|
||||||
else:
|
|
||||||
pbar.finish()
|
|
||||||
pbar = None
|
|
||||||
for model_name, url in MODELS.items():
|
|
||||||
if os.path.exists(f'.models/{model_name}'):
|
|
||||||
continue
|
|
||||||
print(f'Downloading {model_name} from {url}...')
|
|
||||||
request.urlretrieve(url, f'.models/{model_name}', show_progress)
|
|
||||||
print('Done.')
|
|
||||||
|
|
||||||
|
|
||||||
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True):
|
|
||||||
"""
|
|
||||||
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
|
|
||||||
"""
|
|
||||||
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
|
|
||||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
|
||||||
conditioning_free=cond_free, conditioning_free_k=1)
|
|
||||||
|
|
||||||
|
|
||||||
def load_conditioning(path, sample_rate=22050, cond_length=132300):
|
|
||||||
rel_clip = load_audio(path, sample_rate)
|
|
||||||
gap = rel_clip.shape[-1] - cond_length
|
|
||||||
if gap < 0:
|
|
||||||
rel_clip = F.pad(rel_clip, pad=(0, abs(gap)))
|
|
||||||
elif gap > 0:
|
|
||||||
rand_start = random.randint(0, gap)
|
|
||||||
rel_clip = rel_clip[:, rand_start:rand_start + cond_length]
|
|
||||||
mel_clip = TorchMelSpectrogram()(rel_clip.unsqueeze(0)).squeeze(0)
|
|
||||||
return mel_clip.unsqueeze(0).cuda(), rel_clip.unsqueeze(0).cuda()
|
|
||||||
|
|
||||||
|
|
||||||
def fix_autoregressive_output(codes, stop_token):
|
|
||||||
"""
|
|
||||||
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
|
|
||||||
trained on and what the autoregressive code generator creates (which has no padding or end).
|
|
||||||
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
|
|
||||||
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
|
|
||||||
and copying out the last few codes.
|
|
||||||
|
|
||||||
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
|
|
||||||
"""
|
|
||||||
# Strip off the autoregressive stop token and add padding.
|
|
||||||
stop_token_indices = (codes == stop_token).nonzero()
|
|
||||||
if len(stop_token_indices) == 0:
|
|
||||||
print("No stop tokens found, enjoy that output of yours!")
|
|
||||||
return
|
|
||||||
else:
|
|
||||||
codes[stop_token_indices] = 83
|
|
||||||
stm = stop_token_indices.min().item()
|
|
||||||
codes[stm:] = 83
|
|
||||||
if stm - 3 < codes.shape[0]:
|
|
||||||
codes[-3] = 45
|
|
||||||
codes[-2] = 45
|
|
||||||
codes[-1] = 248
|
|
||||||
|
|
||||||
return codes
|
|
||||||
|
|
||||||
|
|
||||||
def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_input, mean=False):
|
|
||||||
"""
|
|
||||||
Uses the specified diffusion model and DVAE model to convert the provided MEL & conditioning inputs into an audio clip.
|
|
||||||
"""
|
|
||||||
with torch.no_grad():
|
|
||||||
cond_mel = wav_to_univnet_mel(conditioning_input.squeeze(1), do_normalization=False)
|
|
||||||
# Pad MEL to multiples of 32
|
|
||||||
msl = mel_codes.shape[-1]
|
|
||||||
dsl = 32
|
|
||||||
gap = dsl - (msl % dsl)
|
|
||||||
if gap > 0:
|
|
||||||
mel = torch.nn.functional.pad(mel_codes, (0, gap))
|
|
||||||
|
|
||||||
output_shape = (mel.shape[0], 100, mel.shape[-1]*4)
|
|
||||||
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mel)
|
|
||||||
if mean:
|
|
||||||
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=torch.zeros(output_shape, device=mel_codes.device),
|
|
||||||
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
|
|
||||||
else:
|
|
||||||
mel = diffuser.p_sample_loop(diffusion_model, output_shape, model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
|
|
||||||
return denormalize_tacotron_mel(mel)[:,:,:msl*4]
|
|
||||||
|
|
||||||
|
from api import TextToSpeech, load_conditioning
|
||||||
|
from utils.audio import load_audio
|
||||||
|
from utils.tokenizer import VoiceBpeTokenizer
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# These are voices drawn randomly from the training set. You are free to substitute your own voices in, but testing
|
# These are voices drawn randomly from the training set. You are free to substitute your own voices in, but testing
|
||||||
|
@ -139,101 +29,23 @@ if __name__ == '__main__':
|
||||||
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
||||||
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
||||||
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=512)
|
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=512)
|
||||||
parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=16)
|
parser.add_argument('-batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
|
||||||
parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
|
parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
|
||||||
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
|
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
os.makedirs(args.output_path, exist_ok=True)
|
os.makedirs(args.output_path, exist_ok=True)
|
||||||
download_models()
|
|
||||||
|
tts = TextToSpeech(autoregressive_batch_size=args.batch_size)
|
||||||
|
|
||||||
for voice in args.voice.split(','):
|
for voice in args.voice.split(','):
|
||||||
print("Loading data..")
|
|
||||||
tokenizer = VoiceBpeTokenizer()
|
tokenizer = VoiceBpeTokenizer()
|
||||||
text = torch.IntTensor(tokenizer.encode(args.text)).unsqueeze(0).cuda()
|
text = torch.IntTensor(tokenizer.encode(args.text)).unsqueeze(0).cuda()
|
||||||
text = F.pad(text, (0,1)) # This may not be necessary.
|
text = F.pad(text, (0,1)) # This may not be necessary.
|
||||||
cond_paths = preselected_cond_voices[voice]
|
cond_paths = preselected_cond_voices[voice]
|
||||||
conds = []
|
conds = []
|
||||||
for cond_path in cond_paths:
|
for cond_path in cond_paths:
|
||||||
c, cond_wav = load_conditioning(cond_path)
|
c = load_audio(cond_path, 22050)
|
||||||
conds.append(c)
|
conds.append(c)
|
||||||
conds = torch.stack(conds, dim=1)
|
gen = tts.tts(args.text, conds, num_autoregressive_samples=args.num_samples)
|
||||||
cond_diffusion = cond_wav[:, :88200] # The diffusion model expects <= 88200 conditioning samples.
|
torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), gen.squeeze(0).cpu(), 24000)
|
||||||
|
|
||||||
print("Loading GPT TTS..")
|
|
||||||
autoregressive = UnifiedVoice(max_mel_tokens=300, max_text_tokens=200, max_conditioning_inputs=2, layers=30, model_dim=1024,
|
|
||||||
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False, train_solo_embeddings=False,
|
|
||||||
average_conditioning_embeddings=True).cuda().eval()
|
|
||||||
autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))
|
|
||||||
stop_mel_token = autoregressive.stop_mel_token
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
print("Performing autoregressive inference..")
|
|
||||||
samples = []
|
|
||||||
for b in tqdm(range(args.num_batches)):
|
|
||||||
codes = autoregressive.inference_speech(conds, text, num_beams=1, repetition_penalty=1.0, do_sample=True, top_k=50, top_p=.95,
|
|
||||||
temperature=.9, num_return_sequences=args.num_samples//args.num_batches, length_penalty=1)
|
|
||||||
padding_needed = 250 - codes.shape[1]
|
|
||||||
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
|
||||||
samples.append(codes)
|
|
||||||
del autoregressive
|
|
||||||
|
|
||||||
print("Loading CLIP..")
|
|
||||||
clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12, text_seq_len=350, text_heads=8,
|
|
||||||
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430, use_xformers=True).cuda().eval()
|
|
||||||
clip.load_state_dict(torch.load('.models/clip.pth'))
|
|
||||||
print("Performing CLIP filtering..")
|
|
||||||
clip_results = []
|
|
||||||
for batch in samples:
|
|
||||||
for i in range(batch.shape[0]):
|
|
||||||
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
|
||||||
clip_results.append(clip(text.repeat(batch.shape[0], 1), batch, return_loss=False))
|
|
||||||
clip_results = torch.cat(clip_results, dim=0)
|
|
||||||
samples = torch.cat(samples, dim=0)
|
|
||||||
best_results = samples[torch.topk(clip_results, k=args.num_diffusion_samples).indices]
|
|
||||||
|
|
||||||
# Delete the autoregressive and clip models to free up GPU memory
|
|
||||||
del samples, clip
|
|
||||||
|
|
||||||
print("Loading Diffusion Model..")
|
|
||||||
diffusion = DiffusionTts(model_channels=512, in_channels=100, out_channels=200, in_latent_channels=1024,
|
|
||||||
channel_mult=[1, 2, 3, 4], num_res_blocks=[3, 3, 3, 3], token_conditioning_resolutions=[1,4,8],
|
|
||||||
dropout=0, attention_resolutions=[4,8], num_heads=8, kernel_size=3, scale_factor=2,
|
|
||||||
time_embed_dim_multiplier=4, unconditioned_percentage=0, conditioning_dim_factor=2,
|
|
||||||
conditioning_expansion=1)
|
|
||||||
diffusion.load_state_dict(torch.load('.models/diffusion.pth'))
|
|
||||||
diffusion = diffusion.cuda().eval()
|
|
||||||
print("Loading vocoder..")
|
|
||||||
vocoder = UnivNetGenerator()
|
|
||||||
vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
|
||||||
vocoder = vocoder.cuda()
|
|
||||||
vocoder.eval(inference=True)
|
|
||||||
initial_diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=40, cond_free=False)
|
|
||||||
final_diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=500)
|
|
||||||
|
|
||||||
print("Performing vocoding..")
|
|
||||||
wav_candidates = []
|
|
||||||
for b in range(best_results.shape[0]):
|
|
||||||
code = best_results[b].unsqueeze(0)
|
|
||||||
mel = do_spectrogram_diffusion(diffusion, initial_diffuser, code, cond_diffusion, mean=False)
|
|
||||||
wav = vocoder.inference(mel)
|
|
||||||
wav_candidates.append(wav.cpu())
|
|
||||||
|
|
||||||
# Further refine the remaining candidates using a ASR model to pick out the ones that are the most understandable.
|
|
||||||
transcriber = ocotillo.Transcriber(on_cuda=True)
|
|
||||||
transcriptions = transcriber.transcribe_batch(torch.cat(wav_candidates, dim=0).squeeze(1), 24000)
|
|
||||||
best = 99999999
|
|
||||||
for i, transcription in enumerate(transcriptions):
|
|
||||||
dist = lev_distance(transcription, args.text.lower())
|
|
||||||
if dist < best:
|
|
||||||
best = dist
|
|
||||||
best_codes = best_results[i].unsqueeze(0)
|
|
||||||
best_wav = wav_candidates[i]
|
|
||||||
del transcriber
|
|
||||||
torchaudio.save(os.path.join(args.output_path, f'{voice}_poor.wav'), best_wav.squeeze(0).cpu(), 24000)
|
|
||||||
|
|
||||||
# Perform diffusion again with the high-quality diffuser.
|
|
||||||
mel = do_spectrogram_diffusion(diffusion, final_diffuser, best_codes, cond_diffusion, mean=False)
|
|
||||||
wav = vocoder.inference(mel)
|
|
||||||
torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), wav.squeeze(0).cpu(), 24000)
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user