Upgrade CLIP model and add eval_multiple

This commit is contained in:
James Betker 2022-03-28 19:33:31 -06:00
parent adccaa44bc
commit f1adc12505
6 changed files with 350 additions and 67 deletions

214
api.py Normal file
View File

@ -0,0 +1,214 @@
import argparse
import os
import random
from urllib import request
import torch
import torch.nn.functional as F
import torchaudio
import progressbar
import ocotillo
from models.diffusion_decoder import DiffusionTts
from models.autoregressive import UnifiedVoice
from tqdm import tqdm
from models.arch_util import TorchMelSpectrogram
from models.text_voice_clip import VoiceCLIP
from models.vocoder import UnivNetGenerator
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
from utils.tokenizer import VoiceBpeTokenizer, lev_distance
pbar = None
def download_models():
MODELS = {
'clip.pth': 'https://huggingface.co/jbetker/tortoise-tts-clip/resolve/main/pytorch-model.bin',
'diffusion.pth': 'https://huggingface.co/jbetker/tortoise-tts-diffusion-v1/resolve/main/pytorch-model.bin',
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-autoregressive/resolve/main/pytorch-model.bin'
}
os.makedirs('.models', exist_ok=True)
def show_progress(block_num, block_size, total_size):
global pbar
if pbar is None:
pbar = progressbar.ProgressBar(maxval=total_size)
pbar.start()
downloaded = block_num * block_size
if downloaded < total_size:
pbar.update(downloaded)
else:
pbar.finish()
pbar = None
for model_name, url in MODELS.items():
if os.path.exists(f'.models/{model_name}'):
continue
print(f'Downloading {model_name} from {url}...')
request.urlretrieve(url, f'.models/{model_name}', show_progress)
print('Done.')
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True):
"""
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
"""
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
conditioning_free=cond_free, conditioning_free_k=1)
def load_conditioning(clip, cond_length=132300):
gap = clip.shape[-1] - cond_length
if gap < 0:
clip = F.pad(clip, pad=(0, abs(gap)))
elif gap > 0:
rand_start = random.randint(0, gap)
clip = clip[:, rand_start:rand_start + cond_length]
mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0)
return mel_clip.unsqueeze(0).cuda()
def fix_autoregressive_output(codes, stop_token):
"""
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
trained on and what the autoregressive code generator creates (which has no padding or end).
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
and copying out the last few codes.
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
"""
# Strip off the autoregressive stop token and add padding.
stop_token_indices = (codes == stop_token).nonzero()
if len(stop_token_indices) == 0:
print("No stop tokens found, enjoy that output of yours!")
return codes
else:
codes[stop_token_indices] = 83
stm = stop_token_indices.min().item()
codes[stm:] = 83
if stm - 3 < codes.shape[0]:
codes[-3] = 45
codes[-2] = 45
codes[-1] = 248
return codes
def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_input, mean=False):
"""
Uses the specified diffusion model and DVAE model to convert the provided MEL & conditioning inputs into an audio clip.
"""
with torch.no_grad():
cond_mel = wav_to_univnet_mel(conditioning_input.squeeze(1), do_normalization=False)
# Pad MEL to multiples of 32
msl = mel_codes.shape[-1]
dsl = 32
gap = dsl - (msl % dsl)
if gap > 0:
mel = torch.nn.functional.pad(mel_codes, (0, gap))
output_shape = (mel.shape[0], 100, mel.shape[-1]*4)
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mel)
if mean:
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=torch.zeros(output_shape, device=mel_codes.device),
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
else:
mel = diffuser.p_sample_loop(diffusion_model, output_shape, model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
return denormalize_tacotron_mel(mel)[:,:,:msl*4]
class TextToSpeech:
def __init__(self, autoregressive_batch_size=32):
self.autoregressive_batch_size = autoregressive_batch_size
self.tokenizer = VoiceBpeTokenizer()
download_models()
self.autoregressive = UnifiedVoice(max_mel_tokens=300, max_text_tokens=200, max_conditioning_inputs=2, layers=30,
model_dim=1024,
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
train_solo_embeddings=False,
average_conditioning_embeddings=True).cpu().eval()
self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
text_seq_len=350, text_heads=8,
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
use_xformers=True).cpu().eval()
self.clip.load_state_dict(torch.load('.models/clip.pth'))
self.diffusion = DiffusionTts(model_channels=512, in_channels=100, out_channels=200, in_latent_channels=1024,
channel_mult=[1, 2, 3, 4], num_res_blocks=[3, 3, 3, 3],
token_conditioning_resolutions=[1, 4, 8],
dropout=0, attention_resolutions=[4, 8], num_heads=8, kernel_size=3, scale_factor=2,
time_embed_dim_multiplier=4, unconditioned_percentage=0, conditioning_dim_factor=2,
conditioning_expansion=1).cpu().eval()
self.diffusion.load_state_dict(torch.load('.models/diffusion.pth'))
self.vocoder = UnivNetGenerator().cpu()
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
self.vocoder.eval(inference=True)
def tts(self, text, voice_samples, num_autoregressive_samples=512, k=1, diffusion_iterations=100, cond_free=True):
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
text = F.pad(text, (0, 1)) # This may not be necessary.
conds = []
if not isinstance(voice_samples, list):
voice_samples = [voice_samples]
for vs in voice_samples:
conds.append(load_conditioning(vs))
conds = torch.stack(conds, dim=1)
cond_diffusion = voice_samples[0].cuda()
# The diffusion model expects = 88200 conditioning samples.
if cond_diffusion.shape[-1] < 88200:
cond_diffusion = F.pad(cond_diffusion, (0, 88200-cond_diffusion.shape[-1]))
else:
cond_diffusion = cond_diffusion[:, :88200]
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free)
with torch.no_grad():
samples = []
num_batches = num_autoregressive_samples // self.autoregressive_batch_size
stop_mel_token = self.autoregressive.stop_mel_token
self.autoregressive = self.autoregressive.cuda()
for b in tqdm(range(num_batches)):
codes = self.autoregressive.inference_speech(conds, text, num_beams=1, repetition_penalty=1.0, do_sample=True,
top_k=50, top_p=.95,
temperature=.9,
num_return_sequences=self.autoregressive_batch_size,
length_penalty=1)
padding_needed = 250 - codes.shape[1]
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
samples.append(codes)
self.autoregressive = self.autoregressive.cpu()
clip_results = []
self.clip = self.clip.cuda()
for batch in samples:
for i in range(batch.shape[0]):
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
clip_results.append(self.clip(text.repeat(batch.shape[0], 1), batch, return_loss=False))
clip_results = torch.cat(clip_results, dim=0)
samples = torch.cat(samples, dim=0)
best_results = samples[torch.topk(clip_results, k=k).indices]
self.clip = self.clip.cpu()
del samples
print("Performing vocoding..")
wav_candidates = []
self.diffusion = self.diffusion.cuda()
self.vocoder = self.vocoder.cuda()
for b in range(best_results.shape[0]):
code = best_results[b].unsqueeze(0)
mel = do_spectrogram_diffusion(self.diffusion, diffuser, code, cond_diffusion, mean=False)
wav = self.vocoder.inference(mel)
wav_candidates.append(wav.cpu())
self.diffusion = self.diffusion.cpu()
self.vocoder = self.vocoder.cpu()
if len(wav_candidates) > 1:
return wav_candidates
return wav_candidates[0]

View File

@ -138,8 +138,8 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.") parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol') parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=1024) parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=512)
parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=32) parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=16)
parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16) parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/') parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
args = parser.parse_args() args = parser.parse_args()
@ -179,19 +179,15 @@ if __name__ == '__main__':
del autoregressive del autoregressive
print("Loading CLIP..") print("Loading CLIP..")
clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=8, text_seq_len=120, text_heads=8, clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12, text_seq_len=350, text_heads=8,
num_speech_tokens=8192, speech_enc_depth=10, speech_heads=8, speech_seq_len=250).cuda().eval() num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430, use_xformers=True).cuda().eval()
clip.load_state_dict(torch.load('.models/clip.pth')) clip.load_state_dict(torch.load('.models/clip.pth'))
print("Performing CLIP filtering..") print("Performing CLIP filtering..")
clip_results = [] clip_results = []
for batch in samples: for batch in samples:
for i in range(batch.shape[0]): for i in range(batch.shape[0]):
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token) batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
text = text[:, :120] # Ugly hack to fix the fact that I didn't train CLIP to handle long enough text. clip_results.append(clip(text.repeat(batch.shape[0], 1), batch, return_loss=False))
clip_results.append(clip(text.repeat(batch.shape[0], 1),
torch.full((batch.shape[0],), fill_value=text.shape[1]-1, dtype=torch.long, device='cuda'),
batch, torch.full((batch.shape[0],), fill_value=batch.shape[1]*1024, dtype=torch.long, device='cuda'),
return_loss=False))
clip_results = torch.cat(clip_results, dim=0) clip_results = torch.cat(clip_results, dim=0)
samples = torch.cat(samples, dim=0) samples = torch.cat(samples, dim=0)
best_results = samples[torch.topk(clip_results, k=args.num_diffusion_samples).indices] best_results = samples[torch.topk(clip_results, k=args.num_diffusion_samples).indices]

33
eval_multiple.py Normal file
View File

@ -0,0 +1,33 @@
import os
import torchaudio
from api import TextToSpeech
from utils.audio import load_audio
if __name__ == '__main__':
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
outpath = 'D:\\tmp\\tortoise-tts-eval\\baseline'
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
os.makedirs(outpath, exist_ok=True)
os.makedirs(outpath_real, exist_ok=True)
with open(fname, 'r', encoding='utf-8') as f:
lines = [l.strip().split('\t') for l in f.readlines()]
recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
tts = TextToSpeech()
for e, line in enumerate(lines):
transcript = line[0]
if len(transcript) > 120:
continue # We need to support this, but cannot yet.
path = os.path.join(os.path.dirname(fname), line[1])
cond_audio = load_audio(path, 22050)
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=512, k=1, diffusion_iterations=200, cond_free=True)
down = torchaudio.functional.resample(sample, 24000, 22050)
fout_path = os.path.join(outpath, os.path.basename(line[1]))
torchaudio.save(fout_path, down.squeeze(0), 22050)
recorder.write(f'{transcript}\t{fout_path}\n')
recorder.flush()
recorder.close()

View File

@ -1,9 +1,11 @@
import functools
import math import math
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torchaudio import torchaudio
from x_transformers import ContinuousTransformerWrapper
def zero_module(module): def zero_module(module):
@ -317,3 +319,45 @@ class TorchMelSpectrogram(nn.Module):
self.mel_norms = self.mel_norms.to(mel.device) self.mel_norms = self.mel_norms.to(mel.device)
mel = mel / self.mel_norms.unsqueeze(0).unsqueeze(-1) mel = mel / self.mel_norms.unsqueeze(0).unsqueeze(-1)
return mel return mel
class CheckpointedLayer(nn.Module):
"""
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
checkpoint for all other args.
"""
def __init__(self, wrap):
super().__init__()
self.wrap = wrap
def forward(self, x, *args, **kwargs):
for k, v in kwargs.items():
assert not (isinstance(v, torch.Tensor) and v.requires_grad) # This would screw up checkpointing.
partial = functools.partial(self.wrap, **kwargs)
return torch.utils.checkpoint.checkpoint(partial, x, *args)
class CheckpointedXTransformerEncoder(nn.Module):
"""
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
to channels-last that XTransformer expects.
"""
def __init__(self, needs_permute=True, exit_permute=True, checkpoint=True, **xtransformer_kwargs):
super().__init__()
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
self.needs_permute = needs_permute
self.exit_permute = exit_permute
if not checkpoint:
return
for i in range(len(self.transformer.attn_layers.layers)):
n, b, r = self.transformer.attn_layers.layers[i]
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
def forward(self, x, **kwargs):
if self.needs_permute:
x = x.permute(0,2,1)
h = self.transformer(x, **kwargs)
if self.exit_permute:
h = h.permute(0,2,1)
return h

View File

@ -15,7 +15,8 @@ from torch.nn import Linear
from torch.utils.checkpoint import checkpoint from torch.utils.checkpoint import checkpoint
from x_transformers import ContinuousTransformerWrapper, Encoder from x_transformers import ContinuousTransformerWrapper, Encoder
from models.arch_util import normalization, zero_module, Downsample, Upsample, AudioMiniEncoder, AttentionBlock from models.arch_util import normalization, zero_module, Downsample, Upsample, AudioMiniEncoder, AttentionBlock, \
CheckpointedXTransformerEncoder
def is_latent(t): def is_latent(t):
@ -157,43 +158,6 @@ class ResBlock(TimestepBlock):
return self.skip_connection(x) + h return self.skip_connection(x) + h
class CheckpointedLayer(nn.Module):
"""
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
checkpoint for all other args.
"""
def __init__(self, wrap):
super().__init__()
self.wrap = wrap
def forward(self, x, *args, **kwargs):
for k, v in kwargs.items():
assert not (isinstance(v, torch.Tensor) and v.requires_grad) # This would screw up checkpointing.
partial = functools.partial(self.wrap, **kwargs)
return torch.utils.checkpoint.checkpoint(partial, x, *args)
class CheckpointedXTransformerEncoder(nn.Module):
"""
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
to channels-last that XTransformer expects.
"""
def __init__(self, needs_permute=True, **xtransformer_kwargs):
super().__init__()
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
self.needs_permute = needs_permute
for i in range(len(self.transformer.attn_layers.layers)):
n, b, r = self.transformer.attn_layers.layers[i]
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
def forward(self, x, **kwargs):
if self.needs_permute:
x = x.permute(0,2,1)
h = self.transformer(x, **kwargs)
return h.permute(0,2,1)
class DiffusionTts(nn.Module): class DiffusionTts(nn.Module):
""" """
The full UNet model with attention and timestep embedding. The full UNet model with attention and timestep embedding.

View File

@ -2,6 +2,9 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch import einsum from torch import einsum
from x_transformers import Encoder
from models.arch_util import CheckpointedXTransformerEncoder
from models.transformer import Transformer from models.transformer import Transformer
@ -13,7 +16,6 @@ def masked_mean(t, mask, dim = 1):
t = t.masked_fill(~mask[:, :, None], 0.) t = t.masked_fill(~mask[:, :, None], 0.)
return t.sum(dim = 1) / mask.sum(dim = 1)[..., None] return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]
class VoiceCLIP(nn.Module): class VoiceCLIP(nn.Module):
""" """
CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
@ -39,40 +41,69 @@ class VoiceCLIP(nn.Module):
text_mask_percentage=0, text_mask_percentage=0,
voice_mask_percentage=0, voice_mask_percentage=0,
wav_token_compression=1024, wav_token_compression=1024,
use_xformers=False,
): ):
super().__init__() super().__init__()
self.text_emb = nn.Embedding(num_text_tokens, dim_text) self.text_emb = nn.Embedding(num_text_tokens, dim_text)
self.text_pos_emb = nn.Embedding(text_seq_len, dim_text)
self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
heads=text_heads)
self.to_text_latent = nn.Linear(dim_text, dim_latent, bias=False) self.to_text_latent = nn.Linear(dim_text, dim_latent, bias=False)
self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech) self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech)
self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech) self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)
if use_xformers:
self.text_transformer = CheckpointedXTransformerEncoder(
needs_permute=False,
exit_permute=False,
max_seq_len=-1,
use_pos_emb=False,
attn_layers=Encoder(
dim=dim_text,
depth=text_enc_depth,
heads=text_heads,
ff_dropout=.1,
ff_mult=2,
attn_dropout=.1,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
))
self.speech_transformer = CheckpointedXTransformerEncoder(
needs_permute=False,
exit_permute=False,
max_seq_len=-1,
use_pos_emb=False,
attn_layers=Encoder(
dim=dim_speech,
depth=speech_enc_depth,
heads=speech_heads,
ff_dropout=.1,
ff_mult=2,
attn_dropout=.1,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
))
else:
self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
heads=text_heads)
self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech, self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
depth=speech_enc_depth, heads=speech_heads) depth=speech_enc_depth, heads=speech_heads)
self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)
self.temperature = nn.Parameter(torch.tensor(1.)) self.temperature = nn.Parameter(torch.tensor(1.))
self.text_mask_percentage = text_mask_percentage self.text_mask_percentage = text_mask_percentage
self.voice_mask_percentage = voice_mask_percentage self.voice_mask_percentage = voice_mask_percentage
self.wav_token_compression = wav_token_compression self.wav_token_compression = wav_token_compression
self.xformers = use_xformers
if not use_xformers:
self.text_pos_emb = nn.Embedding(text_seq_len, dim_text)
self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech)
def forward( def forward(
self, self,
text, text,
text_lengths,
speech_tokens, speech_tokens,
wav_lengths,
return_loss=False return_loss=False
): ):
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
# chopping the inputs by the maximum actual length.
max_text_len = text_lengths.max()
text = text[:, :max_text_len]
max_mel_len = wav_lengths.max() // self.wav_token_compression
speech_tokens = speech_tokens[:, :max_mel_len]
b, device = text.shape[0], text.device b, device = text.shape[0], text.device
if self.training: if self.training:
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
@ -82,9 +113,10 @@ class VoiceCLIP(nn.Module):
voice_mask = torch.ones_like(speech_tokens.float()).bool() voice_mask = torch.ones_like(speech_tokens.float()).bool()
text_emb = self.text_emb(text) text_emb = self.text_emb(text)
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
speech_emb = self.speech_emb(speech_tokens) speech_emb = self.speech_emb(speech_tokens)
if not self.xformers:
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device)) speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))
enc_text = self.text_transformer(text_emb, mask=text_mask) enc_text = self.text_transformer(text_emb, mask=text_mask)