#!/usr/bin/env python3 import argparse import os import sys import tempfile import time import torch import torchaudio from tortoise.api import MODELS_DIR, TextToSpeech from tortoise.utils.audio import get_voices, load_voices, load_audio from tortoise.utils.text import split_and_recombine_text parser = argparse.ArgumentParser( description='TorToiSe is a text-to-speech program that is capable of synthesizing speech ' 'in multiple voices with realistic prosody and intonation.') parser.add_argument( 'text', type=str, nargs='*', help='Text to speak. If omitted, text is read from stdin.') parser.add_argument( '-v, --voice', type=str, default='random', metavar='VOICE', dest='voice', help='Selects the voice to use for generation. Use the & character to join two voices together. ' 'Use a comma to perform inference on multiple voices. Set to "all" to use all available voices. ' 'Note that multiple voices require the --output-dir option to be set.') parser.add_argument( '-V, --voices-dir', metavar='VOICES_DIR', type=str, dest='voices_dir', help='Path to directory containing extra voices to be loaded. Use a comma to specify multiple directories.') parser.add_argument( '-p, --preset', type=str, default='fast', choices=['ultra_fast', 'fast', 'standard', 'high_quality'], dest='preset', help='Which voice quality preset to use.') parser.add_argument( '-q, --quiet', default=False, action='store_true', dest='quiet', help='Suppress all output.') output_group = parser.add_mutually_exclusive_group(required=True) output_group.add_argument( '-l, --list-voices', default=False, action='store_true', dest='list_voices', help='List available voices and exit.') output_group.add_argument( '-P, --play', action='store_true', dest='play', help='Play the audio (requires pydub).') output_group.add_argument( '-o, --output', type=str, metavar='OUTPUT', dest='output', help='Save the audio to a file.') output_group.add_argument( '-O, --output-dir', type=str, metavar='OUTPUT_DIR', dest='output_dir', help='Save the audio to a directory as individual segments.') multi_output_group = parser.add_argument_group('multi-output options (requires --output-dir)') multi_output_group.add_argument( '--candidates', type=int, default=1, help='How many output candidates to produce per-voice. Note that only the first candidate is used in the combined output.') multi_output_group.add_argument( '--regenerate', type=str, default=None, help='Comma-separated list of clip numbers to re-generate.') multi_output_group.add_argument( '--skip-existing', action='store_true', help='Set to skip re-generating existing clips.') advanced_group = parser.add_argument_group('advanced options') advanced_group.add_argument( '--produce-debug-state', default=False, action='store_true', help='Whether or not to produce debug_states in current directory, which can aid in reproducing problems.') advanced_group.add_argument( '--seed', type=int, default=None, help='Random seed which can be used to reproduce results.') advanced_group.add_argument( '--models-dir', type=str, default=MODELS_DIR, help='Where to find pretrained model checkpoints. Tortoise automatically downloads these to ' '~/.cache/tortoise/.models, so this should only be specified if you have custom checkpoints.') advanced_group.add_argument( '--text-split', type=str, default=None, help='How big chunks to split the text into, in the format ,.') advanced_group.add_argument( '--disable-redaction', default=False, action='store_true', help='Normally text enclosed in brackets are automatically redacted from the spoken output ' '(but are still rendered by the model), this can be used for prompt engineering. ' 'Set this to disable this behavior.') advanced_group.add_argument( '--device', type=str, default=None, help='Device to use for inference.') advanced_group.add_argument( '--batch-size', type=int, default=None, help='Batch size to use for inference. If omitted, the batch size is set based on available GPU memory.') tuning_group = parser.add_argument_group('tuning options (overrides preset settings)') tuning_group.add_argument( '--num-autoregressive-samples', type=int, default=None, help='Number of samples taken from the autoregressive model, all of which are filtered using CLVP. ' 'As TorToiSe is a probabilistic model, more samples means a higher probability of creating something "great".') tuning_group.add_argument( '--temperature', type=float, default=None, help='The softmax temperature of the autoregressive model.') tuning_group.add_argument( '--length-penalty', type=float, default=None, help='A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.') tuning_group.add_argument( '--repetition-penalty', type=float, default=None, help='A penalty that prevents the autoregressive decoder from repeating itself during decoding. ' 'Can be used to reduce the incidence of long silences or "uhhhhhhs", etc.') tuning_group.add_argument( '--top-p', type=float, default=None, help='P value used in nucleus sampling. 0 to 1. Lower values mean the decoder produces more "likely" (aka boring) outputs.') tuning_group.add_argument( '--max-mel-tokens', type=int, default=None, help='Restricts the output length. 1 to 600. Each unit is 1/20 of a second.') tuning_group.add_argument( '--cvvp-amount', type=float, default=None, help='How much the CVVP model should influence the output.' 'Increasing this can in some cases reduce the likelyhood of multiple speakers.') tuning_group.add_argument( '--diffusion-iterations', type=int, default=None, help='Number of diffusion steps to perform. More steps means the network has more chances to iteratively' 'refine the output, which should theoretically mean a higher quality output. ' 'Generally a value above 250 is not noticeably better, however.') tuning_group.add_argument( '--cond-free', type=bool, default=None, help='Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for ' 'each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output ' 'of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and ' 'dramatically improves realism.') tuning_group.add_argument( '--cond-free-k', type=float, default=None, help='Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. ' 'As cond_free_k increases, the output becomes dominated by the conditioning-free signal. ' 'Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k') tuning_group.add_argument( '--diffusion-temperature', type=float, default=None, help='Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 ' 'are the "mean" prediction of the diffusion network and will sound bland and smeared. ') usage_examples = f''' Examples: Read text using random voice and place it in a file: {parser.prog} -o hello.wav "Hello, how are you?" Read text from stdin and play it using the tom voice: echo "Say it like you mean it!" | {parser.prog} -P -v tom Read a text file using multiple voices and save the audio clips to a directory: {parser.prog} -O /tmp/tts-results -v tom,emma max_length: parser.error(f'--text-split: desired_length ({desired_length}) must be <= max_length ({max_length})') texts = split_and_recombine_text(text, desired_length, max_length) else: texts = split_and_recombine_text(text) if len(texts) == 0: parser.error('no text provided') if args.output_dir: os.makedirs(args.output_dir, exist_ok=True) else: if len(selected_voices) > 1: parser.error('cannot have multiple voices without --output-dir"') if args.candidates > 1: parser.error('cannot have multiple candidates without --output-dir"') # error out early if pydub isn't installed if args.play: try: import pydub import pydub.playback except ImportError: parser.error('--play requires pydub to be installed, which can be done with "pip install pydub"') seed = int(time.time()) if args.seed is None else args.seed if not args.quiet: print('Loading tts...') tts = TextToSpeech(models_dir=args.models_dir, enable_redaction=not args.disable_redaction, device=args.device, autoregressive_batch_size=args.batch_size) gen_settings = { 'use_deterministic_seed': seed, 'verbose': not args.quiet, 'k': args.candidates, 'preset': args.preset, } tuning_options = [ 'num_autoregressive_samples', 'temperature', 'length_penalty', 'repetition_penalty', 'top_p', 'max_mel_tokens', 'cvvp_amount', 'diffusion_iterations', 'cond_free', 'cond_free_k', 'diffusion_temperature'] for option in tuning_options: if getattr(args, option) is not None: gen_settings[option] = getattr(args, option) total_clips = len(texts) * len(selected_voices) regenerate_clips = [int(x) for x in args.regenerate.split(',')] if args.regenerate else None for voice_idx, voice in enumerate(selected_voices): audio_parts = [] voice_samples, conditioning_latents = load_voices(voice, extra_voice_dirs) for text_idx, text in enumerate(texts): clip_name = f'{"-".join(voice)}_{text_idx:02d}' if args.output_dir: first_clip = os.path.join(args.output_dir, f'{clip_name}_00.wav') if (args.skip_existing or (regenerate_clips and text_idx not in regenerate_clips)) and os.path.exists(first_clip): audio_parts.append(load_audio(first_clip, 24000)) if not args.quiet: print(f'Skipping {clip_name}') continue if not args.quiet: print(f'Rendering {clip_name} ({(voice_idx * len(texts) + text_idx + 1)} of {total_clips})...') print(' ' + text) gen = tts.tts_with_preset( text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, **gen_settings) gen = gen if args.candidates > 1 else [gen] for candidate_idx, audio in enumerate(gen): audio = audio.squeeze(0).cpu() if candidate_idx == 0: audio_parts.append(audio) if args.output_dir: filename = f'{clip_name}_{candidate_idx:02d}.wav' torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000) audio = torch.cat(audio_parts, dim=-1) if args.output_dir: filename = f'{"-".join(voice)}_combined.wav' torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000) elif args.output: filename = args.output if args.output else os.tmp torchaudio.save(args.output, audio, 24000) elif args.play: f = tempfile.NamedTemporaryFile(suffix='.wav', delete=True) torchaudio.save(f.name, audio, 24000) pydub.playback.play(pydub.AudioSegment.from_wav(f.name)) if args.produce_debug_state: os.makedirs('debug_states', exist_ok=True) dbg_state = (seed, texts, voice_samples, conditioning_latents, args) torch.save(dbg_state, os.path.join('debug_states', f'debug_{"-".join(voice)}.pth'))