forked from mrq/tortoise-tts
379 lines
21 KiB
Python
379 lines
21 KiB
Python
import argparse
|
|
import os
|
|
import random
|
|
from urllib import request
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import progressbar
|
|
import torchaudio
|
|
|
|
from models.classifier import AudioMiniEncoderWithClassifierHead
|
|
from models.cvvp import CVVP
|
|
from models.diffusion_decoder import DiffusionTts
|
|
from models.autoregressive import UnifiedVoice
|
|
from tqdm import tqdm
|
|
|
|
from models.arch_util import TorchMelSpectrogram
|
|
from models.clvp import CLVP
|
|
from models.vocoder import UnivNetGenerator
|
|
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
|
|
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
|
from utils.tokenizer import VoiceBpeTokenizer, lev_distance
|
|
|
|
|
|
pbar = None
|
|
|
|
|
|
def download_models(specific_models=None):
|
|
"""
|
|
Call to download all the models that Tortoise uses.
|
|
"""
|
|
MODELS = {
|
|
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/autoregressive.pth',
|
|
'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/classifier.pth',
|
|
'clvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/clvp.pth',
|
|
'cvvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/cvvp.pth',
|
|
'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/diffusion_decoder.pth',
|
|
'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/vocoder.pth',
|
|
}
|
|
os.makedirs('.models', exist_ok=True)
|
|
def show_progress(block_num, block_size, total_size):
|
|
global pbar
|
|
if pbar is None:
|
|
pbar = progressbar.ProgressBar(maxval=total_size)
|
|
pbar.start()
|
|
|
|
downloaded = block_num * block_size
|
|
if downloaded < total_size:
|
|
pbar.update(downloaded)
|
|
else:
|
|
pbar.finish()
|
|
pbar = None
|
|
for model_name, url in MODELS.items():
|
|
if specific_models is not None and model_name not in specific_models:
|
|
continue
|
|
if os.path.exists(f'.models/{model_name}'):
|
|
continue
|
|
print(f'Downloading {model_name} from {url}...')
|
|
request.urlretrieve(url, f'.models/{model_name}', show_progress)
|
|
print('Done.')
|
|
|
|
|
|
def pad_or_truncate(t, length):
|
|
"""
|
|
Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s.
|
|
"""
|
|
if t.shape[-1] == length:
|
|
return t
|
|
elif t.shape[-1] < length:
|
|
return F.pad(t, (0, length-t.shape[-1]))
|
|
else:
|
|
return t[..., :length]
|
|
|
|
|
|
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1):
|
|
"""
|
|
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
|
|
"""
|
|
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
|
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
|
conditioning_free=cond_free, conditioning_free_k=cond_free_k)
|
|
|
|
|
|
def format_conditioning(clip, cond_length=132300):
|
|
"""
|
|
Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models.
|
|
"""
|
|
gap = clip.shape[-1] - cond_length
|
|
if gap < 0:
|
|
clip = F.pad(clip, pad=(0, abs(gap)))
|
|
elif gap > 0:
|
|
rand_start = random.randint(0, gap)
|
|
clip = clip[:, rand_start:rand_start + cond_length]
|
|
mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0)
|
|
return mel_clip.unsqueeze(0).cuda()
|
|
|
|
|
|
def fix_autoregressive_output(codes, stop_token, complain=True):
|
|
"""
|
|
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
|
|
trained on and what the autoregressive code generator creates (which has no padding or end).
|
|
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
|
|
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
|
|
and copying out the last few codes.
|
|
|
|
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
|
|
"""
|
|
# Strip off the autoregressive stop token and add padding.
|
|
stop_token_indices = (codes == stop_token).nonzero()
|
|
if len(stop_token_indices) == 0:
|
|
if complain:
|
|
print("No stop tokens found, enjoy that output of yours!")
|
|
return codes
|
|
else:
|
|
codes[stop_token_indices] = 83
|
|
stm = stop_token_indices.min().item()
|
|
codes[stm:] = 83
|
|
if stm - 3 < codes.shape[0]:
|
|
codes[-3] = 45
|
|
codes[-2] = 45
|
|
codes[-1] = 248
|
|
|
|
return codes
|
|
|
|
|
|
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_samples, temperature=1, verbose=True):
|
|
"""
|
|
Uses the specified diffusion model to convert discrete codes into a spectrogram.
|
|
"""
|
|
with torch.no_grad():
|
|
cond_mels = []
|
|
for sample in conditioning_samples:
|
|
# The diffuser operates at a sample rate of 24000 (except for the latent inputs)
|
|
sample = torchaudio.functional.resample(sample, 22050, 24000)
|
|
sample = pad_or_truncate(sample, 102400)
|
|
cond_mel = wav_to_univnet_mel(sample.to(latents.device), do_normalization=False)
|
|
cond_mels.append(cond_mel)
|
|
cond_mels = torch.stack(cond_mels, dim=1)
|
|
|
|
output_seq_len = latents.shape[1] * 4 * 24000 // 22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
|
|
output_shape = (latents.shape[0], 100, output_seq_len)
|
|
precomputed_embeddings = diffusion_model.timestep_independent(latents, cond_mels, output_seq_len, False)
|
|
|
|
noise = torch.randn(output_shape, device=latents.device) * temperature
|
|
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
|
|
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings},
|
|
progress=verbose)
|
|
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]
|
|
|
|
|
|
def classify_audio_clip(clip):
|
|
"""
|
|
Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise.
|
|
:param clip: torch tensor containing audio waveform data (get it from load_audio)
|
|
:return: True if the clip was classified as coming from Tortoise and false if it was classified as real.
|
|
"""
|
|
download_models(['classifier.pth'])
|
|
classifier = AudioMiniEncoderWithClassifierHead(2, spec_dim=1, embedding_dim=512, depth=5, downsample_factor=4,
|
|
resnet_blocks=2, attn_blocks=4, num_attn_heads=4, base_channels=32,
|
|
dropout=0, kernel_size=5, distribute_zero_label=False)
|
|
classifier.load_state_dict(torch.load('.models/classifier.pth', map_location=torch.device('cpu')))
|
|
clip = clip.cpu().unsqueeze(0)
|
|
results = F.softmax(classifier(clip), dim=-1)
|
|
return results[0][0]
|
|
|
|
|
|
class TextToSpeech:
|
|
"""
|
|
Main entry point into Tortoise.
|
|
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
|
|
GPU OOM errors. Larger numbers generates slightly faster.
|
|
"""
|
|
def __init__(self, autoregressive_batch_size=16, models_dir='.models'):
|
|
self.autoregressive_batch_size = autoregressive_batch_size
|
|
self.tokenizer = VoiceBpeTokenizer()
|
|
download_models()
|
|
|
|
if os.path.exists(f'{models_dir}/autoregressive.ptt'):
|
|
# Assume this is a traced directory.
|
|
self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt')
|
|
self.diffusion = torch.jit.load(f'{models_dir}/diffusion_decoder.ptt')
|
|
else:
|
|
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
|
model_dim=1024,
|
|
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
|
|
train_solo_embeddings=False,
|
|
average_conditioning_embeddings=True).cpu().eval()
|
|
self.autoregressive.load_state_dict(torch.load(f'{models_dir}/autoregressive.pth'))
|
|
|
|
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
|
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
|
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
|
self.diffusion.load_state_dict(torch.load(f'{models_dir}/diffusion_decoder.pth'))
|
|
|
|
self.clvp = CLVP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
|
text_seq_len=350, text_heads=8,
|
|
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
|
|
use_xformers=True).cpu().eval()
|
|
self.clvp.load_state_dict(torch.load(f'{models_dir}/clvp.pth'))
|
|
|
|
self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
|
|
speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
|
|
self.cvvp.load_state_dict(torch.load(f'{models_dir}/cvvp.pth'))
|
|
|
|
self.vocoder = UnivNetGenerator().cpu()
|
|
self.vocoder.load_state_dict(torch.load(f'{models_dir}/vocoder.pth')['model_g'])
|
|
self.vocoder.eval(inference=True)
|
|
|
|
def tts_with_preset(self, text, voice_samples, preset='fast', **kwargs):
|
|
"""
|
|
Calls TTS with one of a set of preset generation parameters. Options:
|
|
'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest).
|
|
'fast': Decent quality speech at a decent inference rate. A good choice for mass inference.
|
|
'standard': Very good quality. This is generally about as good as you are going to get.
|
|
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
|
|
"""
|
|
# Use generally found best tuning knobs for generation.
|
|
kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
|
|
#'typical_sampling': True,
|
|
'top_p': .8,
|
|
'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
|
|
# Presets are defined here.
|
|
presets = {
|
|
'ultra_fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 32, 'cond_free': False},
|
|
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 32},
|
|
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 128},
|
|
'high_quality': {'num_autoregressive_samples': 512, 'diffusion_iterations': 1024},
|
|
}
|
|
kwargs.update(presets[preset])
|
|
return self.tts(text, voice_samples, **kwargs)
|
|
|
|
def tts(self, text, voice_samples, k=1, verbose=True,
|
|
# autoregressive generation parameters follow
|
|
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
|
|
typical_sampling=False, typical_mass=.9,
|
|
# CLVP & CVVP parameters
|
|
clvp_cvvp_slider=.5,
|
|
# diffusion generation parameters follow
|
|
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
|
|
**hf_generate_kwargs):
|
|
"""
|
|
Produces an audio clip of the given text being spoken with the given reference voice.
|
|
:param text: Text to be spoken.
|
|
:param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data.
|
|
:param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP and CVVP models) clips are returned.
|
|
:param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true.
|
|
~~AUTOREGRESSIVE KNOBS~~
|
|
:param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP+CVVP.
|
|
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great".
|
|
:param temperature: The softmax temperature of the autoregressive model.
|
|
:param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.
|
|
:param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence
|
|
of long silences or "uhhhhhhs", etc.
|
|
:param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs.
|
|
:param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second.
|
|
:param typical_sampling: Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666
|
|
I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but
|
|
could use some tuning.
|
|
:param typical_mass: The typical_mass parameter from the typical_sampling algorithm.
|
|
~~CLVP-CVVP KNOBS~~
|
|
:param clvp_cvvp_slider: Controls the influence of the CLVP and CVVP models in selecting the best output from the autoregressive model.
|
|
[0,1]. Values closer to 1 will cause Tortoise to emit clips that follow the text more. Values closer to
|
|
0 will cause Tortoise to emit clips that more closely follow the reference clip (e.g. the voice sounds more
|
|
similar).
|
|
~~DIFFUSION KNOBS~~
|
|
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine
|
|
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better,
|
|
however.
|
|
:param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for
|
|
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output
|
|
of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and
|
|
dramatically improves realism.
|
|
:param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf].
|
|
As cond_free_k increases, the output becomes dominated by the conditioning-free signal.
|
|
Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k
|
|
:param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0
|
|
are the "mean" prediction of the diffusion network and will sound bland and smeared.
|
|
~~OTHER STUFF~~
|
|
:param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer.
|
|
Extra keyword args fed to this function get forwarded directly to that API. Documentation
|
|
here: https://huggingface.co/docs/transformers/internal/generation_utils
|
|
:return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
|
|
Sample rate is 24kHz.
|
|
"""
|
|
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
|
text = F.pad(text, (0, 1)) # This may not be necessary.
|
|
|
|
conds = []
|
|
if not isinstance(voice_samples, list):
|
|
voice_samples = [voice_samples]
|
|
for vs in voice_samples:
|
|
conds.append(format_conditioning(vs))
|
|
conds = torch.stack(conds, dim=1)
|
|
|
|
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)
|
|
|
|
with torch.no_grad():
|
|
samples = []
|
|
num_batches = num_autoregressive_samples // self.autoregressive_batch_size
|
|
stop_mel_token = self.autoregressive.stop_mel_token
|
|
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
|
|
self.autoregressive = self.autoregressive.cuda()
|
|
if verbose:
|
|
print("Generating autoregressive samples..")
|
|
for b in tqdm(range(num_batches), disable=not verbose):
|
|
codes = self.autoregressive.inference_speech(conds, text,
|
|
do_sample=True,
|
|
top_p=top_p,
|
|
temperature=temperature,
|
|
num_return_sequences=self.autoregressive_batch_size,
|
|
length_penalty=length_penalty,
|
|
repetition_penalty=repetition_penalty,
|
|
max_generate_length=max_mel_tokens,
|
|
**hf_generate_kwargs)
|
|
padding_needed = max_mel_tokens - codes.shape[1]
|
|
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
|
samples.append(codes)
|
|
self.autoregressive = self.autoregressive.cpu()
|
|
|
|
clip_results = []
|
|
self.clvp = self.clvp.cuda()
|
|
self.cvvp = self.cvvp.cuda()
|
|
if verbose:
|
|
print("Computing best candidates using CLVP and CVVP")
|
|
for batch in tqdm(samples, disable=not verbose):
|
|
for i in range(batch.shape[0]):
|
|
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
|
clvp = self.clvp(text.repeat(batch.shape[0], 1), batch, return_loss=False)
|
|
cvvp_accumulator = 0
|
|
for cl in range(conds.shape[1]):
|
|
cvvp_accumulator = cvvp_accumulator + self.cvvp(conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False )
|
|
cvvp = cvvp_accumulator / conds.shape[1]
|
|
clip_results.append(clvp * clvp_cvvp_slider + cvvp * (1-clvp_cvvp_slider))
|
|
clip_results = torch.cat(clip_results, dim=0)
|
|
samples = torch.cat(samples, dim=0)
|
|
best_results = samples[torch.topk(clip_results, k=k).indices]
|
|
self.clvp = self.clvp.cpu()
|
|
self.cvvp = self.cvvp.cpu()
|
|
del samples
|
|
|
|
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
|
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
|
# results, but will increase memory usage.
|
|
self.autoregressive = self.autoregressive.cuda()
|
|
best_latents = self.autoregressive(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results,
|
|
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device),
|
|
return_latent=True, clip_inputs=False)
|
|
self.autoregressive = self.autoregressive.cpu()
|
|
|
|
if verbose:
|
|
print("Transforming autoregressive outputs into audio..")
|
|
wav_candidates = []
|
|
self.diffusion = self.diffusion.cuda()
|
|
self.vocoder = self.vocoder.cuda()
|
|
for b in range(best_results.shape[0]):
|
|
codes = best_results[b].unsqueeze(0)
|
|
latents = best_latents[b].unsqueeze(0)
|
|
|
|
# Find the first occurrence of the "calm" token and trim the codes to that.
|
|
ctokens = 0
|
|
for k in range(codes.shape[-1]):
|
|
if codes[0, k] == calm_token:
|
|
ctokens += 1
|
|
else:
|
|
ctokens = 0
|
|
if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
|
|
latents = latents[:, :k]
|
|
break
|
|
|
|
mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, voice_samples, temperature=diffusion_temperature, verbose=verbose)
|
|
wav = self.vocoder.inference(mel)
|
|
wav_candidates.append(wav.cpu())
|
|
self.diffusion = self.diffusion.cpu()
|
|
self.vocoder = self.vocoder.cpu()
|
|
|
|
if len(wav_candidates) > 1:
|
|
return wav_candidates
|
|
return wav_candidates[0]
|