tortoise-tts/models/vocoder.py
James Betker 3dc66ba308 Revert "Merge pull request #3 from osanseviero/main"
This reverts commit 1a41f7f7694cc88b10961424d10e4490a358f9fd, reversing
changes made to cf7a4bc7e773465a8e913228d642b81ca0475eb7.
2022-04-27 09:15:55 -06:00

326 lines
12 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
MAX_WAV_VALUE = 32768.0
class KernelPredictor(torch.nn.Module):
''' Kernel predictor for the location-variable convolutions'''
def __init__(
self,
cond_channels,
conv_in_channels,
conv_out_channels,
conv_layers,
conv_kernel_size=3,
kpnet_hidden_channels=64,
kpnet_conv_size=3,
kpnet_dropout=0.0,
kpnet_nonlinear_activation="LeakyReLU",
kpnet_nonlinear_activation_params={"negative_slope": 0.1},
):
'''
Args:
cond_channels (int): number of channel for the conditioning sequence,
conv_in_channels (int): number of channel for the input sequence,
conv_out_channels (int): number of channel for the output sequence,
conv_layers (int): number of layers
'''
super().__init__()
self.conv_in_channels = conv_in_channels
self.conv_out_channels = conv_out_channels
self.conv_kernel_size = conv_kernel_size
self.conv_layers = conv_layers
kpnet_kernel_channels = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers # l_w
kpnet_bias_channels = conv_out_channels * conv_layers # l_b
self.input_conv = nn.Sequential(
nn.utils.weight_norm(nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=2, bias=True)),
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
)
self.residual_convs = nn.ModuleList()
padding = (kpnet_conv_size - 1) // 2
for _ in range(3):
self.residual_convs.append(
nn.Sequential(
nn.Dropout(kpnet_dropout),
nn.utils.weight_norm(
nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding,
bias=True)),
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
nn.utils.weight_norm(
nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding,
bias=True)),
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
)
)
self.kernel_conv = nn.utils.weight_norm(
nn.Conv1d(kpnet_hidden_channels, kpnet_kernel_channels, kpnet_conv_size, padding=padding, bias=True))
self.bias_conv = nn.utils.weight_norm(
nn.Conv1d(kpnet_hidden_channels, kpnet_bias_channels, kpnet_conv_size, padding=padding, bias=True))
def forward(self, c):
'''
Args:
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
'''
batch, _, cond_length = c.shape
c = self.input_conv(c)
for residual_conv in self.residual_convs:
residual_conv.to(c.device)
c = c + residual_conv(c)
k = self.kernel_conv(c)
b = self.bias_conv(c)
kernels = k.contiguous().view(
batch,
self.conv_layers,
self.conv_in_channels,
self.conv_out_channels,
self.conv_kernel_size,
cond_length,
)
bias = b.contiguous().view(
batch,
self.conv_layers,
self.conv_out_channels,
cond_length,
)
return kernels, bias
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.input_conv[0])
nn.utils.remove_weight_norm(self.kernel_conv)
nn.utils.remove_weight_norm(self.bias_conv)
for block in self.residual_convs:
nn.utils.remove_weight_norm(block[1])
nn.utils.remove_weight_norm(block[3])
class LVCBlock(torch.nn.Module):
'''the location-variable convolutions'''
def __init__(
self,
in_channels,
cond_channels,
stride,
dilations=[1, 3, 9, 27],
lReLU_slope=0.2,
conv_kernel_size=3,
cond_hop_length=256,
kpnet_hidden_channels=64,
kpnet_conv_size=3,
kpnet_dropout=0.0,
):
super().__init__()
self.cond_hop_length = cond_hop_length
self.conv_layers = len(dilations)
self.conv_kernel_size = conv_kernel_size
self.kernel_predictor = KernelPredictor(
cond_channels=cond_channels,
conv_in_channels=in_channels,
conv_out_channels=2 * in_channels,
conv_layers=len(dilations),
conv_kernel_size=conv_kernel_size,
kpnet_hidden_channels=kpnet_hidden_channels,
kpnet_conv_size=kpnet_conv_size,
kpnet_dropout=kpnet_dropout,
kpnet_nonlinear_activation_params={"negative_slope": lReLU_slope}
)
self.convt_pre = nn.Sequential(
nn.LeakyReLU(lReLU_slope),
nn.utils.weight_norm(nn.ConvTranspose1d(in_channels, in_channels, 2 * stride, stride=stride,
padding=stride // 2 + stride % 2, output_padding=stride % 2)),
)
self.conv_blocks = nn.ModuleList()
for dilation in dilations:
self.conv_blocks.append(
nn.Sequential(
nn.LeakyReLU(lReLU_slope),
nn.utils.weight_norm(nn.Conv1d(in_channels, in_channels, conv_kernel_size,
padding=dilation * (conv_kernel_size - 1) // 2, dilation=dilation)),
nn.LeakyReLU(lReLU_slope),
)
)
def forward(self, x, c):
''' forward propagation of the location-variable convolutions.
Args:
x (Tensor): the input sequence (batch, in_channels, in_length)
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
Returns:
Tensor: the output sequence (batch, in_channels, in_length)
'''
_, in_channels, _ = x.shape # (B, c_g, L')
x = self.convt_pre(x) # (B, c_g, stride * L')
kernels, bias = self.kernel_predictor(c)
for i, conv in enumerate(self.conv_blocks):
output = conv(x) # (B, c_g, stride * L')
k = kernels[:, i, :, :, :, :] # (B, 2 * c_g, c_g, kernel_size, cond_length)
b = bias[:, i, :, :] # (B, 2 * c_g, cond_length)
output = self.location_variable_convolution(output, k, b,
hop_size=self.cond_hop_length) # (B, 2 * c_g, stride * L'): LVC
x = x + torch.sigmoid(output[:, :in_channels, :]) * torch.tanh(
output[:, in_channels:, :]) # (B, c_g, stride * L'): GAU
return x
def location_variable_convolution(self, x, kernel, bias, dilation=1, hop_size=256):
''' perform location-variable convolution operation on the input sequence (x) using the local convolution kernl.
Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100.
Args:
x (Tensor): the input sequence (batch, in_channels, in_length).
kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length)
bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length)
dilation (int): the dilation of convolution.
hop_size (int): the hop_size of the conditioning sequence.
Returns:
(Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length).
'''
batch, _, in_length = x.shape
batch, _, out_channels, kernel_size, kernel_length = kernel.shape
assert in_length == (kernel_length * hop_size), "length of (x, kernel) is not matched"
padding = dilation * int((kernel_size - 1) / 2)
x = F.pad(x, (padding, padding), 'constant', 0) # (batch, in_channels, in_length + 2*padding)
x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding)
if hop_size < dilation:
x = F.pad(x, (0, dilation), 'constant', 0)
x = x.unfold(3, dilation,
dilation) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation)
x = x[:, :, :, :, :hop_size]
x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation)
x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size)
o = torch.einsum('bildsk,biokl->bolsd', x, kernel)
o = o.to(memory_format=torch.channels_last_3d)
bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d)
o = o + bias
o = o.contiguous().view(batch, out_channels, -1)
return o
def remove_weight_norm(self):
self.kernel_predictor.remove_weight_norm()
nn.utils.remove_weight_norm(self.convt_pre[1])
for block in self.conv_blocks:
nn.utils.remove_weight_norm(block[1])
class UnivNetGenerator(nn.Module):
"""UnivNet Generator"""
def __init__(self, noise_dim=64, channel_size=32, dilations=[1,3,9,27], strides=[8,8,4], lReLU_slope=.2, kpnet_conv_size=3,
# Below are MEL configurations options that this generator requires.
hop_length=256, n_mel_channels=100):
super(UnivNetGenerator, self).__init__()
self.mel_channel = n_mel_channels
self.noise_dim = noise_dim
self.hop_length = hop_length
channel_size = channel_size
kpnet_conv_size = kpnet_conv_size
self.res_stack = nn.ModuleList()
hop_length = 1
for stride in strides:
hop_length = stride * hop_length
self.res_stack.append(
LVCBlock(
channel_size,
n_mel_channels,
stride=stride,
dilations=dilations,
lReLU_slope=lReLU_slope,
cond_hop_length=hop_length,
kpnet_conv_size=kpnet_conv_size
)
)
self.conv_pre = \
nn.utils.weight_norm(nn.Conv1d(noise_dim, channel_size, 7, padding=3, padding_mode='reflect'))
self.conv_post = nn.Sequential(
nn.LeakyReLU(lReLU_slope),
nn.utils.weight_norm(nn.Conv1d(channel_size, 1, 7, padding=3, padding_mode='reflect')),
nn.Tanh(),
)
def forward(self, c, z):
'''
Args:
c (Tensor): the conditioning sequence of mel-spectrogram (batch, mel_channels, in_length)
z (Tensor): the noise sequence (batch, noise_dim, in_length)
'''
z = self.conv_pre(z) # (B, c_g, L)
for res_block in self.res_stack:
res_block.to(z.device)
z = res_block(z, c) # (B, c_g, L * s_0 * ... * s_i)
z = self.conv_post(z) # (B, 1, L * 256)
return z
def eval(self, inference=False):
super(UnivNetGenerator, self).eval()
# don't remove weight norm while validation in training loop
if inference:
self.remove_weight_norm()
def remove_weight_norm(self):
print('Removing weight norm...')
nn.utils.remove_weight_norm(self.conv_pre)
for layer in self.conv_post:
if len(layer.state_dict()) != 0:
nn.utils.remove_weight_norm(layer)
for res_block in self.res_stack:
res_block.remove_weight_norm()
def inference(self, c, z=None):
# pad input mel with zeros to cut artifact
# see https://github.com/seungwonpark/melgan/issues/8
zero = torch.full((c.shape[0], self.mel_channel, 10), -11.5129).to(c.device)
mel = torch.cat((c, zero), dim=2)
if z is None:
z = torch.randn(c.shape[0], self.noise_dim, mel.size(2)).to(mel.device)
audio = self.forward(mel, z)
audio = audio[:, :, :-(self.hop_length * 10)]
audio = audio.clamp(min=-1, max=1)
return audio
if __name__ == '__main__':
model = UnivNetGenerator()
c = torch.randn(3, 100, 10)
z = torch.randn(3, 64, 10)
print(c.shape)
y = model(c, z)
print(y.shape)
assert y.shape == torch.Size([3, 1, 2560])
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(pytorch_total_params)