2021-01-08 05:37:41 +00:00
|
|
|
# From: https://github.com/subhadarship/kmeans_pytorch
|
|
|
|
# License: https://github.com/subhadarship/kmeans_pytorch/blob/master/LICENSE
|
2021-01-23 20:46:43 +00:00
|
|
|
import random
|
2021-01-08 05:37:41 +00:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
# ToDo: Can't choose a cluster if two points are too close to each other, that's where the nan come from
|
|
|
|
|
|
|
|
|
|
|
|
def initialize(X, num_clusters):
|
|
|
|
"""
|
|
|
|
initialize cluster centers
|
|
|
|
:param X: (torch.tensor) matrix
|
|
|
|
:param num_clusters: (int) number of clusters
|
|
|
|
:return: (np.array) initial state
|
|
|
|
"""
|
|
|
|
num_samples = len(X)
|
|
|
|
indices = np.random.choice(num_samples, num_clusters, replace=False)
|
|
|
|
initial_state = X[indices]
|
|
|
|
return initial_state
|
|
|
|
|
|
|
|
|
|
|
|
def kmeans(
|
|
|
|
X,
|
|
|
|
num_clusters,
|
|
|
|
distance='euclidean',
|
|
|
|
cluster_centers=[],
|
|
|
|
tol=1e-4,
|
|
|
|
tqdm_flag=True,
|
|
|
|
iter_limit=0,
|
2021-01-23 20:46:43 +00:00
|
|
|
gravity_limit_per_iter=None,
|
2021-01-08 05:37:41 +00:00
|
|
|
device=torch.device('cpu')
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
perform kmeans
|
|
|
|
:param X: (torch.tensor) matrix
|
|
|
|
:param num_clusters: (int) number of clusters
|
|
|
|
:param distance: (str) distance [options: 'euclidean', 'cosine'] [default: 'euclidean']
|
|
|
|
:param tol: (float) threshold [default: 0.0001]
|
|
|
|
:param device: (torch.device) device [default: cpu]
|
|
|
|
:param tqdm_flag: Allows to turn logs on and off
|
|
|
|
:param iter_limit: hard limit for max number of iterations
|
|
|
|
:return: (torch.tensor, torch.tensor) cluster ids, cluster centers
|
|
|
|
"""
|
|
|
|
print(f'running k-means on {device}..')
|
|
|
|
|
|
|
|
if distance == 'euclidean':
|
|
|
|
pairwise_distance_function = pairwise_distance
|
|
|
|
elif distance == 'cosine':
|
|
|
|
pairwise_distance_function = pairwise_cosine
|
|
|
|
else:
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
# convert to float
|
|
|
|
X = X.float()
|
|
|
|
|
|
|
|
# transfer to device
|
|
|
|
X = X.to(device)
|
|
|
|
|
|
|
|
# initialize
|
|
|
|
if type(cluster_centers) == list: # ToDo: make this less annoyingly weird
|
|
|
|
initial_state = initialize(X, num_clusters)
|
|
|
|
else:
|
|
|
|
print('resuming')
|
|
|
|
# find data point closest to the initial cluster center
|
|
|
|
initial_state = cluster_centers
|
|
|
|
dis = pairwise_distance_function(X, initial_state)
|
|
|
|
choice_points = torch.argmin(dis, dim=0)
|
|
|
|
initial_state = X[choice_points]
|
|
|
|
initial_state = initial_state.to(device)
|
|
|
|
|
|
|
|
iteration = 0
|
|
|
|
if tqdm_flag:
|
|
|
|
tqdm_meter = tqdm(desc='[running kmeans]')
|
|
|
|
while True:
|
|
|
|
|
|
|
|
dis = pairwise_distance_function(X, initial_state)
|
|
|
|
|
|
|
|
choice_cluster = torch.argmin(dis, dim=1)
|
|
|
|
|
|
|
|
initial_state_pre = initial_state.clone()
|
|
|
|
|
|
|
|
for index in range(num_clusters):
|
2023-03-21 15:39:28 +00:00
|
|
|
selected = torch.nonzero(
|
|
|
|
choice_cluster == index).squeeze().to(device)
|
2021-01-08 05:37:41 +00:00
|
|
|
selected = torch.index_select(X, 0, selected)
|
2021-01-23 20:46:43 +00:00
|
|
|
if gravity_limit_per_iter and len(selected) > gravity_limit_per_iter:
|
|
|
|
ch = random.randint(0, len(selected)-gravity_limit_per_iter)
|
2023-03-21 15:39:28 +00:00
|
|
|
selected = selected[ch:ch+gravity_limit_per_iter]
|
2021-01-08 05:37:41 +00:00
|
|
|
initial_state[index] = selected.mean(dim=0)
|
|
|
|
|
|
|
|
center_shift = torch.sum(
|
|
|
|
torch.sqrt(
|
|
|
|
torch.sum((initial_state - initial_state_pre) ** 2, dim=1)
|
|
|
|
))
|
|
|
|
|
|
|
|
# increment iteration
|
|
|
|
iteration = iteration + 1
|
|
|
|
|
|
|
|
# update tqdm meter
|
2021-01-23 20:46:43 +00:00
|
|
|
bins = torch.bincount(choice_cluster)
|
2021-01-08 05:37:41 +00:00
|
|
|
if tqdm_flag:
|
|
|
|
tqdm_meter.set_postfix(
|
|
|
|
iteration=f'{iteration}',
|
2021-01-23 20:46:43 +00:00
|
|
|
center_shift=f'{center_shift ** 2}',
|
|
|
|
tol=f'{tol}',
|
|
|
|
bins=f'{bins}',
|
2021-01-08 05:37:41 +00:00
|
|
|
)
|
|
|
|
tqdm_meter.update()
|
2021-01-23 20:46:43 +00:00
|
|
|
if tol > 0 and center_shift ** 2 < tol:
|
2021-01-08 05:37:41 +00:00
|
|
|
break
|
|
|
|
if iter_limit != 0 and iteration >= iter_limit:
|
|
|
|
break
|
|
|
|
|
|
|
|
return choice_cluster.cpu(), initial_state.cpu()
|
|
|
|
|
|
|
|
|
|
|
|
def kmeans_predict(
|
|
|
|
X,
|
|
|
|
cluster_centers,
|
2021-01-10 03:53:14 +00:00
|
|
|
distance='euclidean'
|
2021-01-08 05:37:41 +00:00
|
|
|
):
|
|
|
|
"""
|
|
|
|
predict using cluster centers
|
|
|
|
:param X: (torch.tensor) matrix
|
|
|
|
:param cluster_centers: (torch.tensor) cluster centers
|
|
|
|
:param distance: (str) distance [options: 'euclidean', 'cosine'] [default: 'euclidean']
|
|
|
|
:param device: (torch.device) device [default: 'cpu']
|
|
|
|
:return: (torch.tensor) cluster ids
|
|
|
|
"""
|
|
|
|
if distance == 'euclidean':
|
|
|
|
pairwise_distance_function = pairwise_distance
|
|
|
|
elif distance == 'cosine':
|
|
|
|
pairwise_distance_function = pairwise_cosine
|
|
|
|
else:
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
dis = pairwise_distance_function(X, cluster_centers)
|
|
|
|
choice_cluster = torch.argmin(dis, dim=1)
|
|
|
|
|
2021-01-10 03:53:14 +00:00
|
|
|
return choice_cluster
|
2021-01-08 05:37:41 +00:00
|
|
|
|
|
|
|
|
2021-01-10 03:53:14 +00:00
|
|
|
def pairwise_distance(data1, data2):
|
2021-01-08 05:37:41 +00:00
|
|
|
# N*1*M
|
|
|
|
A = data1.unsqueeze(dim=1)
|
|
|
|
|
|
|
|
# 1*N*M
|
|
|
|
B = data2.unsqueeze(dim=0)
|
|
|
|
|
|
|
|
dis = (A - B) ** 2.0
|
|
|
|
# return N*N matrix for pairwise distance
|
|
|
|
dis = dis.sum(dim=-1).squeeze()
|
|
|
|
return dis
|
|
|
|
|
|
|
|
|
2021-01-10 03:53:14 +00:00
|
|
|
def pairwise_cosine(data1, data2):
|
2021-01-08 05:37:41 +00:00
|
|
|
# N*1*M
|
|
|
|
A = data1.unsqueeze(dim=1)
|
|
|
|
|
|
|
|
# 1*N*M
|
|
|
|
B = data2.unsqueeze(dim=0)
|
|
|
|
|
|
|
|
# normalize the points | [0.3, 0.4] -> [0.3/sqrt(0.09 + 0.16), 0.4/sqrt(0.09 + 0.16)] = [0.3/0.5, 0.4/0.5]
|
|
|
|
A_normalized = A / A.norm(dim=-1, keepdim=True)
|
|
|
|
B_normalized = B / B.norm(dim=-1, keepdim=True)
|
|
|
|
|
|
|
|
cosine = A_normalized * B_normalized
|
|
|
|
|
|
|
|
# return N*N matrix for pairwise distance
|
|
|
|
cosine_dis = 1 - cosine.sum(dim=-1).squeeze()
|
|
|
|
return cosine_dis
|