2020-10-28 02:59:55 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from utils.util import sequential_checkpoint
|
|
|
|
from models.archs.arch_util import ConvGnSilu, make_layer
|
|
|
|
|
|
|
|
|
|
|
|
class TecoResblock(nn.Module):
|
|
|
|
def __init__(self, nf):
|
2020-10-28 03:08:59 +00:00
|
|
|
super(TecoResblock, self).__init__()
|
2020-10-28 02:59:55 +00:00
|
|
|
self.nf = nf
|
|
|
|
self.conv1 = ConvGnSilu(nf, nf, kernel_size=3, norm=False, activation=True, bias=False, weight_init_factor=.1)
|
|
|
|
self.conv2 = ConvGnSilu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False, weight_init_factor=.1)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
identity = x
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
return identity + x
|
|
|
|
|
|
|
|
|
|
|
|
class TecoUpconv(nn.Module):
|
|
|
|
def __init__(self, nf, scale):
|
2020-10-28 03:08:59 +00:00
|
|
|
super(TecoUpconv, self).__init__()
|
2020-10-28 02:59:55 +00:00
|
|
|
self.nf = nf
|
|
|
|
self.scale = scale
|
|
|
|
self.conv1 = ConvGnSilu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
|
|
|
self.conv2 = ConvGnSilu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
|
|
|
self.conv3 = ConvGnSilu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
|
|
|
self.final_conv = ConvGnSilu(nf, 3, kernel_size=1, norm=False, activation=False, bias=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
identity = x
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = nn.functional.interpolate(x, scale_factor=self.scale, mode="nearest")
|
|
|
|
x = self.conv3(x)
|
2020-10-28 03:08:59 +00:00
|
|
|
return self.final_conv(x)
|
2020-10-28 02:59:55 +00:00
|
|
|
|
|
|
|
|
|
|
|
# Extremely simple resnet based generator that is very similar to the one used in the tecogan paper.
|
|
|
|
# Main differences:
|
|
|
|
# - Uses SiLU instead of ReLU
|
|
|
|
# - Reference input is in HR space (just makes more sense)
|
|
|
|
# - Doesn't use transposed convolutions - just uses interpolation instead.
|
|
|
|
# - Upsample block is slightly more complicated.
|
|
|
|
class TecoGen(nn.Module):
|
|
|
|
def __init__(self, nf, scale):
|
2020-10-28 03:08:59 +00:00
|
|
|
super(TecoGen, self).__init__()
|
2020-10-28 02:59:55 +00:00
|
|
|
self.nf = nf
|
|
|
|
self.scale = scale
|
|
|
|
fea_conv = ConvGnSilu(6, nf, kernel_size=7, stride=self.scale, bias=True, norm=False, activation=True)
|
|
|
|
res_layers = [TecoResblock(nf) for i in range(15)]
|
2020-10-28 03:08:59 +00:00
|
|
|
upsample = TecoUpconv(nf, scale)
|
|
|
|
everything = [fea_conv] + res_layers + [upsample]
|
2020-10-28 02:59:55 +00:00
|
|
|
self.core = nn.Sequential(*everything)
|
|
|
|
|
|
|
|
def forward(self, x, ref=None):
|
|
|
|
x = nn.functional.interpolate(x, scale_factor=self.scale, mode="bicubic")
|
|
|
|
if ref is None:
|
|
|
|
ref = torch.zeros_like(x)
|
|
|
|
join = torch.cat([x, ref], dim=1)
|
2020-10-28 03:08:59 +00:00
|
|
|
return x + sequential_checkpoint(self.core, 6, join)
|
2020-10-28 02:59:55 +00:00
|
|
|
|