2020-05-13 15:21:13 +00:00
|
|
|
import argparse
|
|
|
|
import options.options as option
|
|
|
|
from models.networks import define_G
|
|
|
|
import torch
|
2020-05-24 03:09:38 +00:00
|
|
|
import torchvision
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
2020-05-13 15:21:13 +00:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2020-05-24 03:09:38 +00:00
|
|
|
|
2020-05-13 15:21:13 +00:00
|
|
|
parser = argparse.ArgumentParser()
|
2020-06-02 15:35:52 +00:00
|
|
|
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/use_video_upsample.yml')
|
2020-05-13 15:21:13 +00:00
|
|
|
opt = option.parse(parser.parse_args().opt, is_train=False)
|
|
|
|
opt = option.dict_to_nonedict(opt)
|
|
|
|
netG = define_G(opt)
|
2020-05-19 15:36:04 +00:00
|
|
|
dummyInput = torch.rand(1,3,8,8)
|
2020-05-13 15:21:13 +00:00
|
|
|
|
2020-05-19 15:36:04 +00:00
|
|
|
torchscript = False
|
|
|
|
if torchscript:
|
|
|
|
print("Tracing generator network..")
|
|
|
|
traced_netG = torch.jit.trace(netG, dummyInput)
|
|
|
|
traced_netG.save('../results/ts_generator.zip')
|
|
|
|
print(traced_netG)
|
|
|
|
else:
|
|
|
|
print("Performing onnx trace")
|
|
|
|
input_names = ["lr_input"]
|
|
|
|
output_names = ["hr_image"]
|
|
|
|
dynamic_axes = {'lr_input': {0: 'batch', 1: 'filters', 2: 'h', 3: 'w'}, 'hr_image': {0: 'batch', 1: 'filters', 2: 'h', 3: 'w'}}
|
|
|
|
|
|
|
|
torch.onnx.export(netG, dummyInput, "../results/gen.onnx", verbose=True, input_names=input_names,
|
|
|
|
output_names=output_names, dynamic_axes=dynamic_axes, opset_version=11)
|