forked from mrq/DL-Art-School
141 lines
5.8 KiB
Python
141 lines
5.8 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import numpy as np
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
|
||
|
__all__ = ['FixupResNet', 'fixup_resnet18', 'fixup_resnet34', 'fixup_resnet50', 'fixup_resnet101', 'fixup_resnet152']
|
||
|
|
||
|
|
||
|
def conv3x3(in_planes, out_planes, stride=1):
|
||
|
"""3x3 convolution with padding"""
|
||
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
||
|
padding=1, bias=False)
|
||
|
|
||
|
def conv5x5(in_planes, out_planes, stride=1):
|
||
|
"""3x3 convolution with padding"""
|
||
|
return nn.Conv2d(in_planes, out_planes, kernel_size=5, stride=stride,
|
||
|
padding=2, bias=False)
|
||
|
|
||
|
def conv1x1(in_planes, out_planes, stride=1):
|
||
|
"""1x1 convolution"""
|
||
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
||
|
|
||
|
|
||
|
class FixupBasicBlock(nn.Module):
|
||
|
expansion = 1
|
||
|
|
||
|
def __init__(self, inplanes, planes, stride=1, downsample=None, conv_create=conv3x3):
|
||
|
super(FixupBasicBlock, self).__init__()
|
||
|
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
||
|
self.bias1a = nn.Parameter(torch.zeros(1))
|
||
|
self.conv1 = conv_create(inplanes, planes, stride)
|
||
|
self.bias1b = nn.Parameter(torch.zeros(1))
|
||
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||
|
self.bias2a = nn.Parameter(torch.zeros(1))
|
||
|
self.conv2 = conv_create(planes, planes)
|
||
|
self.scale = nn.Parameter(torch.ones(1))
|
||
|
self.bias2b = nn.Parameter(torch.zeros(1))
|
||
|
self.downsample = downsample
|
||
|
self.stride = stride
|
||
|
|
||
|
def forward(self, x):
|
||
|
identity = x
|
||
|
|
||
|
out = self.conv1(x + self.bias1a)
|
||
|
out = self.lrelu(out + self.bias1b)
|
||
|
|
||
|
out = self.conv2(out + self.bias2a)
|
||
|
out = out * self.scale + self.bias2b
|
||
|
|
||
|
if self.downsample is not None:
|
||
|
identity = self.downsample(x + self.bias1a)
|
||
|
|
||
|
out += identity
|
||
|
out = self.lrelu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class FixupResNet(nn.Module):
|
||
|
|
||
|
def __init__(self, block, layers, num_filters=64):
|
||
|
super(FixupResNet, self).__init__()
|
||
|
self.num_layers = sum(layers) + layers[-1] # The last layer is applied twice to achieve 4x upsampling.
|
||
|
self.inplanes = num_filters
|
||
|
# Part 1 - Process raw input image. Most denoising should appear here and this should be the most complicated
|
||
|
# part of the block.
|
||
|
self.conv1 = nn.Conv2d(3, num_filters, kernel_size=5, stride=1, padding=2,
|
||
|
bias=False)
|
||
|
self.bias1 = nn.Parameter(torch.zeros(1))
|
||
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||
|
self.layer1 = self._make_layer(block, num_filters, layers[0], stride=1)
|
||
|
self.skip1 = nn.Conv2d(num_filters, 3, kernel_size=5, stride=1, padding=2, bias=False)
|
||
|
self.skip1_bias = nn.Parameter(torch.zeros(1))
|
||
|
|
||
|
# Part 2 - This is the upsampler core. It consists of a normal multiplicative conv followed by several residual
|
||
|
# convs which are intended to repair artifacts caused by 2x interpolation.
|
||
|
# This core layer should by itself accomplish 2x super-resolution. We use it in repeat to do the
|
||
|
# requested SR.
|
||
|
nf2 = int(num_filters/4)
|
||
|
# This part isn't repeated. It de-filters the output from the previous step to fit the filter size used in the
|
||
|
# upsampler-conv.
|
||
|
self.upsampler_conv = nn.Conv2d(num_filters, nf2, kernel_size=3, stride=1, padding=1, bias=False)
|
||
|
self.uc_bias = nn.Parameter(torch.zeros(1))
|
||
|
self.inplanes = nf2
|
||
|
|
||
|
# This is the repeated part.
|
||
|
self.layer2 = self._make_layer(block, int(nf2), layers[1], stride=1, conv_type=conv5x5)
|
||
|
self.skip2 = nn.Conv2d(nf2, 3, kernel_size=5, stride=1, padding=2, bias=False)
|
||
|
self.skip2_bias = nn.Parameter(torch.zeros(1))
|
||
|
|
||
|
self.final_defilter = nn.Conv2d(nf2, 3, kernel_size=5, stride=1, padding=2, bias=True)
|
||
|
self.bias2 = nn.Parameter(torch.zeros(1))
|
||
|
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, FixupBasicBlock):
|
||
|
nn.init.normal_(m.conv1.weight, mean=0, std=np.sqrt(2 / (m.conv1.weight.shape[0] * np.prod(m.conv1.weight.shape[2:]))) * self.num_layers ** (-0.5))
|
||
|
nn.init.constant_(m.conv2.weight, 0)
|
||
|
if m.downsample is not None:
|
||
|
nn.init.normal_(m.downsample.weight, mean=0, std=np.sqrt(2 / (m.downsample.weight.shape[0] * np.prod(m.downsample.weight.shape[2:]))))
|
||
|
'''
|
||
|
elif isinstance(m, nn.Linear):
|
||
|
nn.init.constant_(m.weight, 0)
|
||
|
nn.init.constant_(m.bias, 0)'''
|
||
|
|
||
|
def _make_layer(self, block, planes, blocks, stride=1, conv_type=conv3x3):
|
||
|
defilter = None
|
||
|
if self.inplanes != planes * block.expansion:
|
||
|
defilter = conv1x1(self.inplanes, planes * block.expansion, stride)
|
||
|
|
||
|
layers = []
|
||
|
layers.append(block(self.inplanes, planes, stride, defilter))
|
||
|
self.inplanes = planes * block.expansion
|
||
|
for _ in range(1, blocks):
|
||
|
layers.append(block(self.inplanes, planes, conv_create=conv_type))
|
||
|
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.conv1(x)
|
||
|
x = self.lrelu(x + self.bias1)
|
||
|
x = self.layer1(x)
|
||
|
skip_lo = self.skip1(x) + self.skip1_bias
|
||
|
|
||
|
x = self.lrelu(self.upsampler_conv(x) + self.uc_bias)
|
||
|
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
||
|
x = self.layer2(x)
|
||
|
skip_med = self.skip2(x) + self.skip2_bias
|
||
|
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
||
|
x = self.layer2(x)
|
||
|
x = self.final_defilter(x) + self.bias2
|
||
|
return x, skip_med, skip_lo
|
||
|
|
||
|
def fixup_resnet34(**kwargs):
|
||
|
"""Constructs a Fixup-ResNet-34 model.
|
||
|
"""
|
||
|
model = FixupResNet(FixupBasicBlock, [2, 28], **kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
__all__ = ['FixupResNet', 'fixup_resnet34']
|