1
0
forked from mrq/DL-Art-School
DL-Art-School/codes/models/archs/panet/tools.py

85 lines
2.7 KiB
Python
Raw Normal View History

2020-10-12 16:20:55 +00:00
import os
import torch
import numpy as np
from PIL import Image
import torch.nn.functional as F
def normalize(x):
return x.mul_(2).add_(-1)
def same_padding(images, ksizes, strides, rates):
assert len(images.size()) == 4
batch_size, channel, rows, cols = images.size()
out_rows = (rows + strides[0] - 1) // strides[0]
out_cols = (cols + strides[1] - 1) // strides[1]
effective_k_row = (ksizes[0] - 1) * rates[0] + 1
effective_k_col = (ksizes[1] - 1) * rates[1] + 1
padding_rows = max(0, (out_rows - 1) * strides[0] + effective_k_row - rows)
padding_cols = max(0, (out_cols - 1) * strides[1] + effective_k_col - cols)
# Pad the input
padding_top = int(padding_rows / 2.)
padding_left = int(padding_cols / 2.)
padding_bottom = padding_rows - padding_top
padding_right = padding_cols - padding_left
paddings = (padding_left, padding_right, padding_top, padding_bottom)
images = torch.nn.ZeroPad2d(paddings)(images)
return images
def extract_image_patches(images, ksizes, strides, rates, padding='same'):
"""
Extract patches from images and put them in the C output dimension.
:param padding:
:param images: [batch, channels, in_rows, in_cols]. A 4-D Tensor with shape
:param ksizes: [ksize_rows, ksize_cols]. The size of the sliding window for
each dimension of images
:param strides: [stride_rows, stride_cols]
:param rates: [dilation_rows, dilation_cols]
:return: A Tensor
"""
assert len(images.size()) == 4
assert padding in ['same', 'valid']
batch_size, channel, height, width = images.size()
if padding == 'same':
images = same_padding(images, ksizes, strides, rates)
elif padding == 'valid':
pass
else:
raise NotImplementedError('Unsupported padding type: {}.\
Only "same" or "valid" are supported.'.format(padding))
unfold = torch.nn.Unfold(kernel_size=ksizes,
dilation=rates,
padding=0,
stride=strides)
patches = unfold(images)
return patches # [N, C*k*k, L], L is the total number of such blocks
def reduce_mean(x, axis=None, keepdim=False):
if not axis:
axis = range(len(x.shape))
for i in sorted(axis, reverse=True):
x = torch.mean(x, dim=i, keepdim=keepdim)
return x
def reduce_std(x, axis=None, keepdim=False):
if not axis:
axis = range(len(x.shape))
for i in sorted(axis, reverse=True):
x = torch.std(x, dim=i, keepdim=keepdim)
return x
def reduce_sum(x, axis=None, keepdim=False):
if not axis:
axis = range(len(x.shape))
for i in sorted(axis, reverse=True):
x = torch.sum(x, dim=i, keepdim=keepdim)
return x