DL-Art-School/codes/models/srflow_orig/SRFlowNet_arch.py

169 lines
7.7 KiB
Python
Raw Normal View History

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
2020-11-20 06:47:24 +00:00
from models.archs.srflow_orig.RRDBNet_arch import RRDBNet
from models.archs.srflow_orig.FlowUpsamplerNet import FlowUpsamplerNet
2020-12-18 16:18:34 +00:00
import models.srflow_orig.thops as thops
2020-11-20 06:47:24 +00:00
import models.archs.srflow_orig.flow as flow
from utils.util import opt_get
class SRFlowNet(nn.Module):
def __init__(self, in_nc, out_nc, nf, nb, gc=32, scale=4, K=None, opt=None, step=None):
super(SRFlowNet, self).__init__()
self.opt = opt
self.quant = 255 if opt_get(opt, ['datasets', 'train', 'quant']) is \
None else opt_get(opt, ['datasets', 'train', 'quant'])
initial_stride = opt_get(opt, ['networks', 'generator', 'initial_stride'], 1)
self.RRDB = RRDBNet(in_nc, out_nc, nf=nf, nb=nb, gc=gc, scale=scale, opt=opt, initial_conv_stride=initial_stride)
2020-11-20 06:47:24 +00:00
if 'pretrain_rrdb' in opt['networks']['generator'].keys():
rrdb_state_dict = torch.load(opt['networks']['generator']['pretrain_rrdb'])
self.RRDB.load_state_dict(rrdb_state_dict, strict=True)
2020-11-20 06:47:24 +00:00
hidden_channels = opt_get(opt, ['networks', 'generator','flow', 'hidden_channels'])
hidden_channels = hidden_channels or 64
2020-11-20 17:03:06 +00:00
self.RRDB_training = opt_get(self.opt, ['networks', 'generator','train_RRDB'], default=False)
self.flow_scale = opt_get(self.opt, ['networks', 'generator', 'flow_scale'], default=opt['scale'])
self.patch_sz = opt_get(self.opt, ['networks', 'generator', 'flow', 'patch_size'], 160)
self.flowUpsamplerNet = \
FlowUpsamplerNet((self.patch_sz, self.patch_sz, 3), hidden_channels, K,
2020-11-20 06:47:24 +00:00
flow_coupling=opt['networks']['generator']['flow']['coupling'], opt=opt)
self.i = 0
2020-11-21 17:13:05 +00:00
self.dbg_logp = 0
self.dbg_logdet = 0
2020-11-20 06:47:24 +00:00
def get_random_z(self, heat, seed=None, batch_size=1, lr_shape=None, device='cuda'):
if seed: torch.manual_seed(seed)
if opt_get(self.opt, ['networks', 'generator', 'flow', 'split', 'enable']):
C = self.flowUpsamplerNet.C
H = int(self.flow_scale * lr_shape[0] // (self.flowUpsamplerNet.scaleH * self.flow_scale / self.RRDB.scale))
W = int(self.flow_scale * lr_shape[1] // (self.flowUpsamplerNet.scaleW * self.flow_scale / self.RRDB.scale))
2020-11-20 06:47:24 +00:00
size = (batch_size, C, H, W)
if heat == 0:
z = torch.zeros(size)
else:
z = torch.normal(mean=0, std=heat, size=size)
else:
L = opt_get(self.opt, ['networks', 'generator', 'flow', 'L']) or 3
fac = 2 ** (L - 3)
z_size = int(self.lr_size // (2 ** (L - 3)))
z = torch.normal(mean=0, std=heat, size=(batch_size, 3 * 8 * 8 * fac * fac, z_size, z_size))
return z.to(device)
def forward(self, gt=None, lr=None, z=None, eps_std=None, reverse=False, epses=None, reverse_with_grad=False,
lr_enc=None,
add_gt_noise=True, step=None, y_label=None):
if not reverse:
return self.normal_flow(gt, lr, epses=epses, lr_enc=lr_enc, add_gt_noise=add_gt_noise, step=step,
y_onehot=y_label)
else:
assert lr.shape[1] == 3
2020-11-20 06:47:24 +00:00
if z is None:
# Synthesize it. Accommodate mismatches in LR scale and flow_scale, which are normally handled by the RRDB subnet.
lr_shape = [d * self.opt['scale'] / self.flow_scale for d in lr.shape[2:]]
z = self.get_random_z(eps_std, batch_size=lr.shape[0], lr_shape=lr_shape, device=lr.device)
if reverse_with_grad:
return self.reverse_flow(lr, z, y_onehot=y_label, eps_std=eps_std, epses=epses, lr_enc=lr_enc,
add_gt_noise=add_gt_noise)
else:
with torch.no_grad():
return self.reverse_flow(lr, z, y_onehot=y_label, eps_std=eps_std, epses=epses, lr_enc=lr_enc,
add_gt_noise=add_gt_noise)
def normal_flow(self, gt, lr, y_onehot=None, epses=None, lr_enc=None, add_gt_noise=True, step=None):
if lr_enc is None:
2020-11-20 06:47:24 +00:00
if self.RRDB_training:
lr_enc = self.rrdbPreprocessing(lr)
else:
with torch.no_grad():
lr_enc = self.rrdbPreprocessing(lr)
logdet = torch.zeros_like(gt[:, 0, 0, 0])
pixels = thops.pixels(gt)
z = gt
if add_gt_noise:
# Setup
2020-11-20 06:47:24 +00:00
noiseQuant = opt_get(self.opt, ['networks', 'generator','flow', 'augmentation', 'noiseQuant'], True)
if noiseQuant:
z = z + ((torch.rand(z.shape, device=z.device) - 0.5) / self.quant)
logdet = logdet + float(-np.log(self.quant) * pixels)
# Encode
epses, logdet = self.flowUpsamplerNet(rrdbResults=lr_enc, gt=z, logdet=logdet, reverse=False, epses=[],
y_onehot=y_onehot)
objective = logdet.clone()
if isinstance(epses, (list, tuple)):
z = epses[-1]
else:
z = epses
2020-12-04 19:49:20 +00:00
logp = flow.GaussianDiag.logp(None, None, z)
2020-11-21 17:13:05 +00:00
objective = objective + logp
nll = (-objective) / float(np.log(2.) * pixels)
2020-11-21 17:13:05 +00:00
self.dbg_logp = -logp.mean().item() / float(np.log(2.) * pixels)
self.dbg_logdet = -logdet.mean().item() / float(np.log(2.) * pixels)
if isinstance(epses, list):
return epses, nll, logdet
return z, nll, logdet
2020-11-21 17:13:05 +00:00
def get_debug_values(self, s, n):
return {"logp": self.dbg_logp, "logdet": self.dbg_logdet}
def rrdbPreprocessing(self, lr):
rrdbResults = self.RRDB(lr, get_steps=True)
2020-11-27 03:30:55 +00:00
block_idxs = opt_get(self.opt, ['networks', 'generator', 'flow', 'stackRRDB', 'blocks']) or []
if len(block_idxs) > 0:
concat = torch.cat([rrdbResults["block_{}".format(idx)] for idx in block_idxs], dim=1)
2020-11-20 06:47:24 +00:00
if opt_get(self.opt, ['networks', 'generator','flow', 'stackRRDB', 'concat']) or False:
keys = ['last_lr_fea', 'fea_up1', 'fea_up2', 'fea_up4']
if 'fea_up0' in rrdbResults.keys():
keys.append('fea_up0')
if 'fea_up-1' in rrdbResults.keys():
keys.append('fea_up-1')
2020-11-21 21:46:15 +00:00
if self.flow_scale >= 8:
keys.append('fea_up8')
2020-11-21 21:46:15 +00:00
if self.flow_scale == 16:
keys.append('fea_up16')
for k in keys:
h = rrdbResults[k].shape[2]
w = rrdbResults[k].shape[3]
rrdbResults[k] = torch.cat([rrdbResults[k], F.interpolate(concat, (h, w))], dim=1)
return rrdbResults
def get_score(self, disc_loss_sigma, z):
score_real = 0.5 * (1 - 1 / (disc_loss_sigma ** 2)) * thops.sum(z ** 2, dim=[1, 2, 3]) - \
z.shape[1] * z.shape[2] * z.shape[3] * math.log(disc_loss_sigma)
return -score_real
def reverse_flow(self, lr, z, y_onehot, eps_std, epses=None, lr_enc=None, add_gt_noise=True):
logdet = torch.zeros_like(lr[:, 0, 0, 0])
2020-12-16 17:27:38 +00:00
pixels = thops.pixels(lr) * self.opt['scale'] ** 2
if add_gt_noise:
logdet = logdet - float(-np.log(self.quant) * pixels)
if lr_enc is None:
2020-11-20 06:47:24 +00:00
if self.RRDB_training:
lr_enc = self.rrdbPreprocessing(lr)
else:
with torch.no_grad():
lr_enc = self.rrdbPreprocessing(lr)
x, logdet = self.flowUpsamplerNet(rrdbResults=lr_enc, z=z, eps_std=eps_std, reverse=True, epses=epses,
logdet=logdet)
2020-12-16 17:28:02 +00:00
return x, logdet, lr_enc['out']