forked from mrq/DL-Art-School
29 lines
794 B
Python
29 lines
794 B
Python
|
import numpy as np
|
||
|
from scipy.io.wavfile import read
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def get_mask_from_lengths(lengths):
|
||
|
max_len = torch.max(lengths).item()
|
||
|
ids = torch.arange(0, max_len, out=torch.LongTensor(max_len, device=lengths.device))
|
||
|
mask = (ids < lengths.unsqueeze(1)).bool()
|
||
|
return mask
|
||
|
|
||
|
|
||
|
def load_wav_to_torch(full_path):
|
||
|
sampling_rate, data = read(full_path)
|
||
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
||
|
|
||
|
|
||
|
def load_filepaths_and_text(filename, split="|"):
|
||
|
with open(filename, encoding='utf-8') as f:
|
||
|
filepaths_and_text = [line.strip().split(split) for line in f]
|
||
|
return filepaths_and_text
|
||
|
|
||
|
|
||
|
def to_gpu(x):
|
||
|
x = x.contiguous()
|
||
|
|
||
|
if torch.cuda.is_available():
|
||
|
x = x.cuda(non_blocking=True)
|
||
|
return torch.autograd.Variable(x)
|