DL-Art-School/dlas/utils/music_utils.py

97 lines
4.2 KiB
Python
Raw Normal View History

import torch
2022-07-08 06:37:53 +00:00
def music2mel(clip):
if len(clip.shape) == 1:
clip = clip.unsqueeze(0)
from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector
inj = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000,
'normalize': True, 'true_normalization': True, 'in': 'in', 'out': 'out'}, {})
return inj({'in': clip})['out']
def music2cqt(clip):
def normalize_cqt(cqt):
# CQT_MIN = 0
CQT_MAX = 18
return 2 * cqt / CQT_MAX - 1
if len(clip.shape) == 1:
clip = clip.unsqueeze(0)
from nnAudio.features.cqt import CQT
2022-07-08 06:37:53 +00:00
# Visually, filter_scale=.25 seems to be the most descriptive representation, but loses frequency fidelity.
# It may be desirable to mix filter_scale=.25 with filter_scale=1.
cqt = CQT(sr=22050, hop_length=256, n_bins=256,
bins_per_octave=32, filter_scale=.25, norm=1, verbose=False)
2022-07-08 06:37:53 +00:00
return normalize_cqt(cqt(clip))
def get_mel2wav_model():
from models.audio.music.unet_diffusion_waveform_gen_simple import \
DiffusionWaveformGen
model = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32, channel_mult=[1, 2, 3, 4, 4],
num_res_blocks=[3, 3, 2, 2, 1], token_conditioning_resolutions=[1, 4, 16], dropout=0, kernel_size=3, scale_factor=2,
time_embed_dim_multiplier=4, unconditioned_percentage=0)
model.load_state_dict(torch.load(
"../experiments/music_mel2wav.pth", map_location=torch.device('cpu')))
model.eval()
return model
def get_mel2wav_v3_model():
from models.audio.music.unet_diffusion_waveform_gen3 import \
DiffusionWaveformGen
model = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32, channel_mult=[1, 1.5, 2, 4],
num_res_blocks=[2, 1, 1, 0], mid_resnet_depth=24, token_conditioning_resolutions=[1, 4],
dropout=0, time_embed_dim_multiplier=1, unconditioned_percentage=0)
model.load_state_dict(torch.load(
"../experiments/music_mel2wav_v3.pth", map_location=torch.device('cpu')))
model.eval()
return model
def get_music_codegen():
2022-05-27 17:44:27 +00:00
from models.audio.mel2vec import ContrastiveTrainingWrapper
2022-05-27 17:40:47 +00:00
model = ContrastiveTrainingWrapper(mel_input_channels=256, inner_dim=1024, layers=24, dropout=0,
mask_time_prob=0,
mask_time_length=6, num_negatives=100, codebook_size=16, codebook_groups=4,
disable_custom_linear_init=True, do_reconstruction_loss=True)
model.load_state_dict(torch.load(
f"../experiments/m2v_music.pth", map_location=torch.device('cpu')))
2022-05-27 17:40:47 +00:00
model = model.eval()
2022-05-27 18:28:04 +00:00
return model
def get_cheater_encoder():
from models.audio.music.gpt_music2 import UpperEncoder
encoder = UpperEncoder(256, 1024, 256)
encoder.load_state_dict(
torch.load('../experiments/music_cheater_encoder_256.pth', map_location=torch.device('cpu')))
encoder = encoder.eval()
return encoder
def get_cheater_decoder():
from models.audio.music.transformer_diffusion12 import \
TransformerDiffusionWithCheaterLatent
model = TransformerDiffusionWithCheaterLatent(in_channels=256, out_channels=512, model_channels=1024,
contraction_dim=512, prenet_channels=1024, input_vec_dim=256,
prenet_layers=6, num_heads=8, num_layers=16, new_code_expansion=True,
dropout=0, unconditioned_percentage=0)
model.load_state_dict(torch.load(
f'../experiments/music_cheater_decoder.pth', map_location=torch.device('cpu')))
model = model.eval()
return model
def get_ar_prior():
from models.audio.music.cheater_gen_ar import ConditioningAR
cheater_ar = ConditioningAR(
1024, layers=24, dropout=0, cond_free_percent=0)
cheater_ar.load_state_dict(torch.load(
'../experiments/music_cheater_ar.pth', map_location=torch.device('cpu')))
2022-07-04 14:50:09 +00:00
cheater_ar = cheater_ar.eval()
return cheater_ar