DL-Art-School/codes/data/audio/random_mp3_splitter.py

54 lines
1.9 KiB
Python
Raw Normal View History

import audio2numpy
from scipy.io import wavfile
from tqdm import tqdm
from data.util import find_audio_files
import numpy as np
import torch
import torch.nn.functional as F
import os.path as osp
if __name__ == '__main__':
2021-08-09 17:55:46 +00:00
src_dir = 'O:\\podcast_dumps'
#src_dir = 'E:\\audio\\books'
output_dir = 'D:\\data\\audio\\podcasts-split'
#output_dir = 'E:\\audio\\books-clips'
clip_length = 5 # In seconds
sparsity = .05 # Only this proportion of the total clips are extracted as wavs.
output_sample_rate=22050
files = find_audio_files(src_dir, include_nonwav=True)
for e, file in enumerate(tqdm(files)):
2021-08-09 17:55:46 +00:00
if e < 1486:
continue
2021-08-09 17:55:46 +00:00
file_basis = osp.relpath(file, src_dir)\
.replace('/', '_')\
.replace('\\', '_')\
.replace('.', '_')\
.replace(' ', '_')\
.replace('!', '_')\
.replace(',', '_')
if len(file_basis) > 100:
file_basis = file_basis[:100]
try:
wave, sample_rate = audio2numpy.open_audio(file)
except:
print(f"Error with {file}")
continue
wave = torch.tensor(wave)
# Strip out channels.
if len(wave.shape) > 1:
2021-08-09 17:55:46 +00:00
wave = wave[:, 1] # Just use the first channel.
# Calculate how much data we need to extract for each clip.
clip_sz = sample_rate * clip_length
interval = int(sample_rate * (clip_length / sparsity))
i = 0
2021-08-09 17:55:46 +00:00
if wave.shape[-1] == 0:
print("Something went wrong: wave shape is 0.")
while (i+clip_sz) < wave.shape[-1]:
clip = wave[i:i+clip_sz]
clip = F.interpolate(clip.view(1,1,clip_sz), scale_factor=output_sample_rate/sample_rate).squeeze()
2021-08-09 17:55:46 +00:00
wavfile.write(osp.join(output_dir, f'{e}_{file_basis}_{i}.wav'), output_sample_rate, clip.numpy())
i = i + interval