2022-05-05 22:47:08 +00:00
import random
import torch
import torch . nn as nn
import torch . nn . functional as F
from torch import autocast
from torchaudio . transforms import TimeMasking , FrequencyMasking
from models . diffusion . nn import timestep_embedding , normalization , zero_module , conv_nd , linear
from models . diffusion . unet_diffusion import AttentionBlock , TimestepEmbedSequential , TimestepBlock
from trainer . networks import register_model
from utils . util import checkpoint
def is_sequence ( t ) :
return t . dtype == torch . long
class ResBlock ( TimestepBlock ) :
def __init__ (
self ,
channels ,
emb_channels ,
dropout ,
out_channels = None ,
dims = 2 ,
kernel_size = 3 ,
efficient_config = True ,
use_scale_shift_norm = False ,
) :
super ( ) . __init__ ( )
self . channels = channels
self . emb_channels = emb_channels
self . dropout = dropout
self . out_channels = out_channels or channels
self . use_scale_shift_norm = use_scale_shift_norm
padding = { 1 : 0 , 3 : 1 , 5 : 2 } [ kernel_size ]
eff_kernel = 1 if efficient_config else 3
eff_padding = 0 if efficient_config else 1
self . in_layers = nn . Sequential (
normalization ( channels ) ,
nn . SiLU ( ) ,
conv_nd ( dims , channels , self . out_channels , eff_kernel , padding = eff_padding ) ,
)
self . emb_layers = nn . Sequential (
nn . SiLU ( ) ,
linear (
emb_channels ,
2 * self . out_channels if use_scale_shift_norm else self . out_channels ,
) ,
)
self . out_layers = nn . Sequential (
normalization ( self . out_channels ) ,
nn . SiLU ( ) ,
nn . Dropout ( p = dropout ) ,
zero_module (
conv_nd ( dims , self . out_channels , self . out_channels , kernel_size , padding = padding )
) ,
)
if self . out_channels == channels :
self . skip_connection = nn . Identity ( )
else :
self . skip_connection = conv_nd ( dims , channels , self . out_channels , eff_kernel , padding = eff_padding )
def forward ( self , x , emb ) :
"""
Apply the block to a Tensor , conditioned on a timestep embedding .
: param x : an [ N x C x . . . ] Tensor of features .
: param emb : an [ N x emb_channels ] Tensor of timestep embeddings .
: return : an [ N x C x . . . ] Tensor of outputs .
"""
return checkpoint (
self . _forward , x , emb
)
def _forward ( self , x , emb ) :
h = self . in_layers ( x )
emb_out = self . emb_layers ( emb ) . type ( h . dtype )
while len ( emb_out . shape ) < len ( h . shape ) :
emb_out = emb_out [ . . . , None ]
if self . use_scale_shift_norm :
out_norm , out_rest = self . out_layers [ 0 ] , self . out_layers [ 1 : ]
scale , shift = torch . chunk ( emb_out , 2 , dim = 1 )
h = out_norm ( h ) * ( 1 + scale ) + shift
h = out_rest ( h )
else :
h = h + emb_out
h = self . out_layers ( h )
return self . skip_connection ( x ) + h
class DiffusionLayer ( TimestepBlock ) :
def __init__ ( self , model_channels , dropout , num_heads ) :
super ( ) . __init__ ( )
self . resblk = ResBlock ( model_channels , model_channels , dropout , model_channels , dims = 1 , use_scale_shift_norm = True )
self . attn = AttentionBlock ( model_channels , num_heads , relative_pos_embeddings = True )
def forward ( self , x , time_emb ) :
y = self . resblk ( x , time_emb )
return self . attn ( y )
class MusicGenerator ( nn . Module ) :
def __init__ (
self ,
model_channels = 512 ,
num_layers = 8 ,
in_channels = 100 ,
out_channels = 200 , # mean and variance
dropout = 0 ,
use_fp16 = False ,
num_heads = 16 ,
# Parameters for regularization.
layer_drop = .1 ,
unconditioned_percentage = .1 , # This implements a mechanism similar to what is used in classifier-free training.
# Masking parameters.
time_mask_percent_max = .4 ,
frequency_mask_percent_max = .4 ,
) :
super ( ) . __init__ ( )
self . in_channels = in_channels
self . model_channels = model_channels
self . out_channels = out_channels
self . dropout = dropout
self . num_heads = num_heads
self . unconditioned_percentage = unconditioned_percentage
self . enable_fp16 = use_fp16
self . layer_drop = layer_drop
self . time_mask_percent_max = time_mask_percent_max
self . frequency_mask_percent_mask = frequency_mask_percent_max
self . inp_block = conv_nd ( 1 , in_channels , model_channels , 3 , 1 , 1 )
self . time_embed = nn . Sequential (
linear ( model_channels , model_channels ) ,
nn . SiLU ( ) ,
linear ( model_channels , model_channels ) ,
)
self . conditioner = nn . Sequential (
nn . Conv1d ( in_channels , model_channels , 3 , padding = 1 ) ,
AttentionBlock ( model_channels , num_heads , relative_pos_embeddings = True ) ,
AttentionBlock ( model_channels , num_heads , relative_pos_embeddings = True ) ,
)
self . unconditioned_embedding = nn . Parameter ( torch . randn ( 1 , model_channels , 1 ) )
self . conditioning_timestep_integrator = TimestepEmbedSequential (
DiffusionLayer ( model_channels , dropout , num_heads ) ,
DiffusionLayer ( model_channels , dropout , num_heads ) ,
)
self . integrating_conv = nn . Conv1d ( model_channels * 2 , model_channels , kernel_size = 1 )
self . mel_head = nn . Conv1d ( model_channels , in_channels , kernel_size = 3 , padding = 1 )
self . layers = nn . ModuleList ( [ DiffusionLayer ( model_channels , dropout , num_heads ) for _ in range ( num_layers ) ] +
[ ResBlock ( model_channels , model_channels , dropout , dims = 1 , use_scale_shift_norm = True ) for _ in range ( 3 ) ] )
self . out = nn . Sequential (
normalization ( model_channels ) ,
nn . SiLU ( ) ,
zero_module ( conv_nd ( 1 , model_channels , out_channels , 3 , padding = 1 ) ) ,
)
def get_grad_norm_parameter_groups ( self ) :
groups = {
' layers ' : list ( self . layers . parameters ( ) ) ,
' conditioner ' : list ( self . conditioner . parameters ( ) ) + list ( self . conditioner . parameters ( ) ) ,
' timestep_integrator ' : list ( self . conditioning_timestep_integrator . parameters ( ) ) + list ( self . integrating_conv . parameters ( ) ) ,
' time_embed ' : list ( self . time_embed . parameters ( ) ) ,
}
return groups
def do_masking ( self , truth ) :
b , c , s = truth . shape
mask = torch . ones_like ( truth )
if random . random ( ) < .5 :
# Frequency mask
cs = random . randint ( 0 , c - 10 )
ce = min ( c - 1 , cs + random . randint ( 1 , int ( self . frequency_mask_percent_mask * c ) ) )
mask [ : , cs : ce ] = 0
else :
# Time mask
cs = random . randint ( 0 , s - 5 )
ce = min ( s - 1 , cs + random . randint ( 1 , int ( self . frequency_mask_percent_mask * s ) ) )
mask [ : , : , cs : ce ] = 0
return truth * mask
def timestep_independent ( self , aligned_conditioning , expected_seq_len , return_code_pred ) :
code_emb = self . conditioner ( aligned_conditioning )
unconditioned_batches = torch . zeros ( ( code_emb . shape [ 0 ] , 1 , 1 ) , device = code_emb . device )
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self . training and self . unconditioned_percentage > 0 :
unconditioned_batches = torch . rand ( ( code_emb . shape [ 0 ] , 1 , 1 ) ,
device = code_emb . device ) < self . unconditioned_percentage
code_emb = torch . where ( unconditioned_batches , self . unconditioned_embedding . repeat ( aligned_conditioning . shape [ 0 ] , 1 , 1 ) ,
code_emb )
expanded_code_emb = F . interpolate ( code_emb , size = expected_seq_len , mode = ' nearest ' )
if not return_code_pred :
return expanded_code_emb
else :
mel_pred = self . mel_head ( expanded_code_emb )
# Multiply mel_pred by !unconditioned_branches, which drops the gradient on unconditioned branches. This is because we don't want that gradient being used to train parameters through the codes_embedder as it unbalances contributions to that network from the MSE loss.
mel_pred = mel_pred * unconditioned_batches . logical_not ( )
return expanded_code_emb , mel_pred
def forward ( self , x , timesteps , truth = None , precomputed_aligned_embeddings = None , conditioning_free = False , return_code_pred = False ) :
"""
Apply the model to an input batch .
: param x : an [ N x C x . . . ] Tensor of inputs .
: param timesteps : a 1 - D batch of timesteps .
: param truth : Input value is either pre - masked ( in inference ) , or unmasked ( during training )
: param precomputed_aligned_embeddings : Embeddings returned from self . timestep_independent ( )
: param conditioning_free : When set , all conditioning inputs ( including tokens and conditioning_input ) will not be considered .
: return : an [ N x C x . . . ] Tensor of outputs .
"""
assert precomputed_aligned_embeddings is not None or truth is not None
assert not ( return_code_pred and precomputed_aligned_embeddings is not None ) # These two are mutually exclusive.
unused_params = [ ]
if conditioning_free :
code_emb = self . unconditioned_embedding . repeat ( x . shape [ 0 ] , 1 , x . shape [ - 1 ] )
unused_params . extend ( list ( self . conditioner . parameters ( ) ) )
else :
if precomputed_aligned_embeddings is not None :
code_emb = precomputed_aligned_embeddings
else :
truth = self . do_masking ( truth )
code_emb , mel_pred = self . timestep_independent ( truth , x . shape [ - 1 ] , True )
unused_params . append ( self . unconditioned_embedding )
time_emb = self . time_embed ( timestep_embedding ( timesteps , self . model_channels ) )
code_emb = self . conditioning_timestep_integrator ( code_emb , time_emb )
x = self . inp_block ( x )
x = torch . cat ( [ x , code_emb ] , dim = 1 )
x = self . integrating_conv ( x )
for i , lyr in enumerate ( self . layers ) :
# Do layer drop where applicable. Do not drop first and last layers.
if self . training and self . layer_drop > 0 and i != 0 and i != ( len ( self . layers ) - 1 ) and random . random ( ) < self . layer_drop :
unused_params . extend ( list ( lyr . parameters ( ) ) )
else :
# First and last blocks will have autocast disabled for improved precision.
with autocast ( x . device . type , enabled = self . enable_fp16 and i != 0 ) :
x = lyr ( x , time_emb )
x = x . float ( )
out = self . out ( x )
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
extraneous_addition = 0
for p in unused_params :
extraneous_addition = extraneous_addition + p . mean ( )
out = out + extraneous_addition * 0
if return_code_pred :
return out , mel_pred
return out
@register_model
def register_music_gap_gen ( opt_net , opt ) :
return MusicGenerator ( * * opt_net [ ' kwargs ' ] )
if __name__ == ' __main__ ' :
clip = torch . randn ( 2 , 100 , 400 )
2022-05-06 06:20:21 +00:00
aligned_latent = torch . randn ( 2 , 100 , 388 )
2022-05-05 22:47:08 +00:00
ts = torch . LongTensor ( [ 600 , 600 ] )
model = MusicGenerator ( 512 , layer_drop = .3 , unconditioned_percentage = .5 )
o = model ( clip , ts , aligned_latent )