forked from mrq/DL-Art-School
Update mdf to be compatible with cheater_gen
This commit is contained in:
parent
69b614e08a
commit
0278576f37
|
@ -270,7 +270,7 @@ def test_cheater_model():
|
||||||
|
|
||||||
def inference_tfdpc4_with_cheater():
|
def inference_tfdpc4_with_cheater():
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
os.makedirs('results/tfdpc_v3', exist_ok=True)
|
os.makedirs('results/tfdpc_v4', exist_ok=True)
|
||||||
|
|
||||||
#length = 40 * 22050 // 256 // 16
|
#length = 40 * 22050 // 256 // 16
|
||||||
samples = {'electronica1': load_audio('Y:\\split\\yt-music-eval\\00001.wav', 22050),
|
samples = {'electronica1': load_audio('Y:\\split\\yt-music-eval\\00001.wav', 22050),
|
||||||
|
@ -290,7 +290,7 @@ def inference_tfdpc4_with_cheater():
|
||||||
model = TransformerDiffusionWithPointConditioning(in_channels=256, out_channels=512, model_channels=1024,
|
model = TransformerDiffusionWithPointConditioning(in_channels=256, out_channels=512, model_channels=1024,
|
||||||
contraction_dim=512, num_heads=8, num_layers=12, dropout=0,
|
contraction_dim=512, num_heads=8, num_layers=12, dropout=0,
|
||||||
use_fp16=False, unconditioned_percentage=0).eval().cuda()
|
use_fp16=False, unconditioned_percentage=0).eval().cuda()
|
||||||
model.load_state_dict(torch.load('x:/dlas/experiments/train_music_cheater_gen_v3/models/59000_generator_ema.pth'))
|
model.load_state_dict(torch.load('x:/dlas/experiments/train_music_cheater_gen_v4/models/28000_generator_ema.pth'))
|
||||||
|
|
||||||
from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector
|
from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector
|
||||||
spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000, 'true_normalization': True,
|
spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000, 'true_normalization': True,
|
||||||
|
@ -308,7 +308,7 @@ def inference_tfdpc4_with_cheater():
|
||||||
conditioning_free=True, conditioning_free_k=1)
|
conditioning_free=True, conditioning_free_k=1)
|
||||||
|
|
||||||
# Conventional decoding method:
|
# Conventional decoding method:
|
||||||
gen_cheater = diffuser.ddim_sample_loop(model, (1,256,length), progress=True, model_kwargs={'true_cheater': ref_cheater})
|
gen_cheater = diffuser.ddim_sample_loop(model, (1,256,length), progress=True, model_kwargs={'conditioning_input': ref_cheater})
|
||||||
|
|
||||||
# Guidance decoding method:
|
# Guidance decoding method:
|
||||||
#mask = torch.ones_like(ref_cheater)
|
#mask = torch.ones_like(ref_cheater)
|
||||||
|
@ -330,7 +330,7 @@ def inference_tfdpc4_with_cheater():
|
||||||
cheater_to_mel = wrap.diff
|
cheater_to_mel = wrap.diff
|
||||||
gen_mel = diffuser.ddim_sample_loop(cheater_to_mel, (1,256,gen_cheater.shape[-1]*16), progress=True,
|
gen_mel = diffuser.ddim_sample_loop(cheater_to_mel, (1,256,gen_cheater.shape[-1]*16), progress=True,
|
||||||
model_kwargs={'codes': gen_cheater.permute(0,2,1)})
|
model_kwargs={'codes': gen_cheater.permute(0,2,1)})
|
||||||
torchvision.utils.save_image((gen_mel + 1)/2, f'results/tfdpc_v3/{k}.png')
|
torchvision.utils.save_image((gen_mel + 1)/2, f'results/tfdpc_v4/{k}.png')
|
||||||
|
|
||||||
from utils.music_utils import get_mel2wav_v3_model
|
from utils.music_utils import get_mel2wav_v3_model
|
||||||
m2w = get_mel2wav_v3_model().cuda()
|
m2w = get_mel2wav_v3_model().cuda()
|
||||||
|
@ -344,9 +344,9 @@ def inference_tfdpc4_with_cheater():
|
||||||
from trainer.injectors.audio_injectors import pixel_shuffle_1d
|
from trainer.injectors.audio_injectors import pixel_shuffle_1d
|
||||||
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
||||||
|
|
||||||
torchaudio.save(f'results/tfdpc_v3/{k}.wav', gen_wav.squeeze(1).cpu(), 22050)
|
torchaudio.save(f'results/tfdpc_v4/{k}.wav', gen_wav.squeeze(1).cpu(), 22050)
|
||||||
torchaudio.save(f'results/tfdpc_v3/{k}_ref.wav', sample.unsqueeze(0).cpu(), 22050)
|
torchaudio.save(f'results/tfdpc_v4/{k}_ref.wav', sample.unsqueeze(0).cpu(), 22050)
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_cheater_model()
|
#test_cheater_model()
|
||||||
#inference_tfdpc4_with_cheater()
|
inference_tfdpc4_with_cheater()
|
||||||
|
|
|
@ -22,7 +22,8 @@ from models.diffusion.gaussian_diffusion import get_named_beta_schedule
|
||||||
from models.diffusion.respace import space_timesteps, SpacedDiffusion
|
from models.diffusion.respace import space_timesteps, SpacedDiffusion
|
||||||
from trainer.injectors.audio_injectors import denormalize_mel, TorchMelSpectrogramInjector, pixel_shuffle_1d, \
|
from trainer.injectors.audio_injectors import denormalize_mel, TorchMelSpectrogramInjector, pixel_shuffle_1d, \
|
||||||
normalize_mel
|
normalize_mel
|
||||||
from utils.music_utils import get_music_codegen, get_mel2wav_model
|
from utils.music_utils import get_music_codegen, get_mel2wav_model, get_cheater_decoder, get_cheater_encoder, \
|
||||||
|
get_mel2wav_v3_model
|
||||||
from utils.util import opt_get, load_model_from_config
|
from utils.util import opt_get, load_model_from_config
|
||||||
|
|
||||||
|
|
||||||
|
@ -34,6 +35,8 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
super().__init__(model, opt_eval, env, uses_all_ddp=True)
|
super().__init__(model, opt_eval, env, uses_all_ddp=True)
|
||||||
self.real_path = opt_eval['path']
|
self.real_path = opt_eval['path']
|
||||||
self.data = self.load_data(self.real_path)
|
self.data = self.load_data(self.real_path)
|
||||||
|
self.clip = opt_get(opt_eval, ['clip_audio'], True) # Recommend setting true for more efficient eval passes.
|
||||||
|
self.ddim = opt_get(opt_eval, ['use_ddim'], False)
|
||||||
if distributed.is_initialized() and distributed.get_world_size() > 1:
|
if distributed.is_initialized() and distributed.get_world_size() > 1:
|
||||||
self.skip = distributed.get_world_size() # One batch element per GPU.
|
self.skip = distributed.get_world_size() # One batch element per GPU.
|
||||||
else:
|
else:
|
||||||
|
@ -48,17 +51,16 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
self.diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [diffusion_steps]), model_mean_type='epsilon',
|
self.diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [diffusion_steps]), model_mean_type='epsilon',
|
||||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule(diffusion_schedule, 4000),
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule(diffusion_schedule, 4000),
|
||||||
conditioning_free=conditioning_free_diffusion_enabled, conditioning_free_k=conditioning_free_k)
|
conditioning_free=conditioning_free_diffusion_enabled, conditioning_free_k=conditioning_free_k)
|
||||||
self.spectral_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [100]), model_mean_type='epsilon',
|
self.spectral_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [16 if self.ddim else 100]), model_mean_type='epsilon',
|
||||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
|
||||||
conditioning_free=False, conditioning_free_k=1)
|
conditioning_free=False, conditioning_free_k=1)
|
||||||
self.dev = self.env['device']
|
self.dev = self.env['device']
|
||||||
mode = opt_get(opt_eval, ['diffusion_type'], 'spec_decode')
|
mode = opt_get(opt_eval, ['diffusion_type'], 'spec_decode')
|
||||||
|
|
||||||
self.spec_decoder = get_mel2wav_model()
|
|
||||||
self.projector = ContrastiveAudio(model_dim=512, transformer_heads=8, dropout=0, encoder_depth=8, mel_channels=256)
|
self.projector = ContrastiveAudio(model_dim=512, transformer_heads=8, dropout=0, encoder_depth=8, mel_channels=256)
|
||||||
self.projector.load_state_dict(torch.load('../experiments/music_eval_projector.pth', map_location=torch.device('cpu')))
|
self.projector.load_state_dict(torch.load('../experiments/music_eval_projector.pth', map_location=torch.device('cpu')))
|
||||||
self.local_modules = {'spec_decoder': self.spec_decoder, 'projector': self.projector}
|
|
||||||
|
|
||||||
|
self.local_modules = {'projector': self.projector}
|
||||||
if mode == 'spec_decode':
|
if mode == 'spec_decode':
|
||||||
self.diffusion_fn = self.perform_diffusion_spec_decode
|
self.diffusion_fn = self.perform_diffusion_spec_decode
|
||||||
self.squeeze_ratio = opt_eval['squeeze_ratio']
|
self.squeeze_ratio = opt_eval['squeeze_ratio']
|
||||||
|
@ -73,6 +75,16 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
partial_high=opt_eval['partial_high'])
|
partial_high=opt_eval['partial_high'])
|
||||||
elif 'from_codes_quant_gradual_decode' == mode:
|
elif 'from_codes_quant_gradual_decode' == mode:
|
||||||
self.diffusion_fn = self.perform_diffusion_from_codes_quant_gradual_decode
|
self.diffusion_fn = self.perform_diffusion_from_codes_quant_gradual_decode
|
||||||
|
elif 'cheater_gen' == mode:
|
||||||
|
self.diffusion_fn = self.perform_reconstruction_from_cheater_gen
|
||||||
|
self.local_modules['cheater_encoder'] = get_cheater_encoder()
|
||||||
|
self.local_modules['cheater_decoder'] = get_cheater_decoder()
|
||||||
|
self.spec_decoder = get_mel2wav_v3_model() # The only reason the other functions don't use v3 is because earlier models were trained with v1 and I want to keep metrics consistent.
|
||||||
|
self.local_modules['spec_decoder'] = self.spec_decoder
|
||||||
|
|
||||||
|
if not hasattr(self, 'spec_decoder'):
|
||||||
|
self.spec_decoder = get_mel2wav_model()
|
||||||
|
self.local_modules['spec_decoder'] = self.spec_decoder
|
||||||
self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000,
|
self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000,
|
||||||
'normalize': True, 'in': 'in', 'out': 'out'}, {})
|
'normalize': True, 'in': 'in', 'out': 'out'}, {})
|
||||||
|
|
||||||
|
@ -191,6 +203,35 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
|
|
||||||
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
|
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
|
||||||
|
|
||||||
|
def perform_reconstruction_from_cheater_gen(self, audio, sample_rate=22050):
|
||||||
|
assert self.ddim, "DDIM mode expected for reconstructing cheater gen. Do you like to waste resources??"
|
||||||
|
audio = audio.unsqueeze(0)
|
||||||
|
|
||||||
|
mel = self.spec_fn({'in': audio})['out']
|
||||||
|
mel_norm = normalize_mel(mel)
|
||||||
|
cheater = self.local_modules['cheater_encoder'].to(audio.device)(mel_norm)
|
||||||
|
|
||||||
|
# 1. Generate the cheater latent using the input as a reference.
|
||||||
|
gen_cheater = self.diffuser.ddim_sample_loop(self.model, cheater.shape, progress=True, model_kwargs={'conditioning_input': cheater})
|
||||||
|
|
||||||
|
# 2. Decode the cheater into a MEL
|
||||||
|
gen_mel = self.diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,gen_cheater.shape[-1]*16), progress=True,
|
||||||
|
model_kwargs={'codes': gen_cheater.permute(0,2,1)})
|
||||||
|
|
||||||
|
# 3. And then the MEL back into a spectrogram
|
||||||
|
output_shape = (1,16,audio.shape[-1]//16)
|
||||||
|
self.spec_decoder = self.spec_decoder.to(audio.device)
|
||||||
|
gen_mel_denorm = denormalize_mel(gen_mel)
|
||||||
|
gen_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
||||||
|
model_kwargs={'codes': gen_mel_denorm})
|
||||||
|
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
||||||
|
|
||||||
|
real_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
||||||
|
model_kwargs={'codes': mel})
|
||||||
|
real_wav = pixel_shuffle_1d(real_wav, 16)
|
||||||
|
|
||||||
|
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate
|
||||||
|
|
||||||
|
|
||||||
def project(self, sample, sample_rate):
|
def project(self, sample, sample_rate):
|
||||||
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
|
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
|
||||||
|
@ -229,6 +270,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
for i in tqdm(list(range(0, len(self.data), self.skip))):
|
for i in tqdm(list(range(0, len(self.data), self.skip))):
|
||||||
path = self.data[(i + self.env['rank']) % len(self.data)]
|
path = self.data[(i + self.env['rank']) % len(self.data)]
|
||||||
audio = load_audio(path, 22050).to(self.dev)
|
audio = load_audio(path, 22050).to(self.dev)
|
||||||
|
if self.clip:
|
||||||
audio = audio[:, :100000]
|
audio = audio[:, :100000]
|
||||||
sample, ref, sample_mel, ref_mel, sample_rate = self.diffusion_fn(audio)
|
sample, ref, sample_mel, ref_mel, sample_rate = self.diffusion_fn(audio)
|
||||||
|
|
||||||
|
@ -259,17 +301,17 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_waveform_gen.yml', 'generator',
|
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_cheater_gen.yml', 'generator',
|
||||||
also_load_savepoint=False,
|
also_load_savepoint=False,
|
||||||
load_path='X:\\dlas\\experiments\\train_music_waveform_gen_retry\\models\\22000_generator_ema.pth'
|
load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v4\\models\\28000_generator_ema.pth'
|
||||||
).cuda()
|
).cuda()
|
||||||
opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
|
opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
|
||||||
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
|
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
|
||||||
'diffusion_steps': 100,
|
'diffusion_steps': 32,
|
||||||
'conditioning_free': False, 'conditioning_free_k': 1,
|
'conditioning_free': False, 'conditioning_free_k': 1, 'clip_audio': False, 'use_ddim': True,
|
||||||
'diffusion_schedule': 'linear', 'diffusion_type': 'spec_decode',
|
'diffusion_schedule': 'linear', 'diffusion_type': 'cheater_gen',
|
||||||
#'partial_low': 128, 'partial_high': 192
|
#'partial_low': 128, 'partial_high': 192
|
||||||
}
|
}
|
||||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 100, 'device': 'cuda', 'opt': {}}
|
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 200, 'device': 'cuda', 'opt': {}}
|
||||||
eval = MusicDiffusionFid(diffusion, opt_eval, env)
|
eval = MusicDiffusionFid(diffusion, opt_eval, env)
|
||||||
print(eval.perform_eval())
|
print(eval.perform_eval())
|
||||||
|
|
|
@ -10,6 +10,7 @@ def get_mel2wav_model():
|
||||||
model.eval()
|
model.eval()
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def get_mel2wav_v3_model():
|
def get_mel2wav_v3_model():
|
||||||
from models.audio.music.unet_diffusion_waveform_gen3 import DiffusionWaveformGen
|
from models.audio.music.unet_diffusion_waveform_gen3 import DiffusionWaveformGen
|
||||||
model = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32, channel_mult=[1,1.5,2,4],
|
model = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32, channel_mult=[1,1.5,2,4],
|
||||||
|
@ -19,6 +20,7 @@ def get_mel2wav_v3_model():
|
||||||
model.eval()
|
model.eval()
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def get_music_codegen():
|
def get_music_codegen():
|
||||||
from models.audio.mel2vec import ContrastiveTrainingWrapper
|
from models.audio.mel2vec import ContrastiveTrainingWrapper
|
||||||
model = ContrastiveTrainingWrapper(mel_input_channels=256, inner_dim=1024, layers=24, dropout=0,
|
model = ContrastiveTrainingWrapper(mel_input_channels=256, inner_dim=1024, layers=24, dropout=0,
|
||||||
|
@ -28,3 +30,23 @@ def get_music_codegen():
|
||||||
model.load_state_dict(torch.load(f"../experiments/m2v_music.pth", map_location=torch.device('cpu')))
|
model.load_state_dict(torch.load(f"../experiments/m2v_music.pth", map_location=torch.device('cpu')))
|
||||||
model = model.eval()
|
model = model.eval()
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def get_cheater_encoder():
|
||||||
|
from models.audio.music.gpt_music2 import UpperEncoder
|
||||||
|
encoder = UpperEncoder(256, 1024, 256)
|
||||||
|
encoder.load_state_dict(
|
||||||
|
torch.load('../experiments/music_cheater_encoder_256.pth', map_location=torch.device('cpu')))
|
||||||
|
encoder = encoder.eval()
|
||||||
|
return encoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_cheater_decoder():
|
||||||
|
from models.audio.music.transformer_diffusion12 import TransformerDiffusionWithCheaterLatent
|
||||||
|
model = TransformerDiffusionWithCheaterLatent(in_channels=256, out_channels=512, model_channels=1024,
|
||||||
|
contraction_dim=512, prenet_channels=1024, input_vec_dim=256,
|
||||||
|
prenet_layers=6, num_heads=8, num_layers=16, new_code_expansion=True,
|
||||||
|
dropout=0, unconditioned_percentage=0)
|
||||||
|
model.load_state_dict(torch.load(f'../experiments/music_cheater_decoder.pth', map_location=torch.device('cpu')))
|
||||||
|
model = model.eval()
|
||||||
|
return model
|
||||||
|
|
Loading…
Reference in New Issue
Block a user