forked from mrq/DL-Art-School
add efficient config to tts9
This commit is contained in:
parent
896accb71f
commit
0523777ff7
|
@ -34,6 +34,7 @@ class ResBlock(TimestepBlock):
|
|||
out_channels=None,
|
||||
dims=2,
|
||||
kernel_size=3,
|
||||
efficient_config=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
|
@ -41,11 +42,13 @@ class ResBlock(TimestepBlock):
|
|||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
|
||||
eff_kernel = 1 if efficient_config else 3
|
||||
eff_padding = 0 if efficient_config else 1
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, 1, padding=0),
|
||||
conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding),
|
||||
)
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
|
@ -67,7 +70,7 @@ class ResBlock(TimestepBlock):
|
|||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
|
@ -146,6 +149,7 @@ class DiffusionTts(nn.Module):
|
|||
kernel_size=3,
|
||||
scale_factor=2,
|
||||
time_embed_dim_multiplier=4,
|
||||
efficient_convs=True, # Uses kernels with width of 1 in several places rather than 3.
|
||||
# Parameters for regularization.
|
||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
||||
# Parameters for super-sampling.
|
||||
|
@ -178,6 +182,7 @@ class DiffusionTts(nn.Module):
|
|||
self.jit_enabled = jit_enabled
|
||||
self.jit_forward = None
|
||||
padding = 1 if kernel_size == 3 else 2
|
||||
down_kernel = 1 if efficient_convs else 3
|
||||
|
||||
time_embed_dim = model_channels * time_embed_dim_multiplier
|
||||
self.time_embed = nn.Sequential(
|
||||
|
@ -251,6 +256,7 @@ class DiffusionTts(nn.Module):
|
|||
out_channels=int(mult * model_channels),
|
||||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
efficient_config=efficient_convs
|
||||
)
|
||||
]
|
||||
ch = int(mult * model_channels)
|
||||
|
@ -270,7 +276,7 @@ class DiffusionTts(nn.Module):
|
|||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor, ksize=1, pad=0
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor, ksize=down_kernel, pad=0 if down_kernel == 1 else 1
|
||||
)
|
||||
)
|
||||
)
|
||||
|
@ -286,6 +292,7 @@ class DiffusionTts(nn.Module):
|
|||
dropout,
|
||||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
efficient_config=efficient_convs,
|
||||
),
|
||||
AttentionBlock(
|
||||
ch,
|
||||
|
@ -298,6 +305,7 @@ class DiffusionTts(nn.Module):
|
|||
dropout,
|
||||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
efficient_config=efficient_convs,
|
||||
),
|
||||
)
|
||||
self._feature_size += ch
|
||||
|
@ -314,6 +322,7 @@ class DiffusionTts(nn.Module):
|
|||
out_channels=int(model_channels * mult),
|
||||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
efficient_config=efficient_convs,
|
||||
)
|
||||
]
|
||||
ch = int(model_channels * mult)
|
||||
|
@ -466,7 +475,8 @@ if __name__ == '__main__':
|
|||
kernel_size=3,
|
||||
scale_factor=2,
|
||||
time_embed_dim_multiplier=4,
|
||||
super_sampling=False)
|
||||
super_sampling=False,
|
||||
efficient_convs=False)
|
||||
# Test with latent aligned conditioning
|
||||
o = model(clip, ts, aligned_latent, cond)
|
||||
# Test with sequence aligned conditioning
|
||||
|
|
Loading…
Reference in New Issue
Block a user