forked from mrq/DL-Art-School
Add labeling feature to image_folder_dataset
This commit is contained in:
parent
ec0ee25f4b
commit
087e9280ed
|
@ -10,6 +10,7 @@ import os
|
||||||
from data import util
|
from data import util
|
||||||
# Builds a dataset created from a simple folder containing a list of training/test/validation images.
|
# Builds a dataset created from a simple folder containing a list of training/test/validation images.
|
||||||
from data.image_corruptor import ImageCorruptor
|
from data.image_corruptor import ImageCorruptor
|
||||||
|
from data.image_label_parser import VsNetImageLabeler
|
||||||
|
|
||||||
|
|
||||||
class ImageFolderDataset:
|
class ImageFolderDataset:
|
||||||
|
@ -28,6 +29,14 @@ class ImageFolderDataset:
|
||||||
else:
|
else:
|
||||||
self.weights = opt['weights']
|
self.weights = opt['weights']
|
||||||
|
|
||||||
|
if 'labeler' in opt.keys():
|
||||||
|
if opt['labeler']['type'] == 'patch_labels':
|
||||||
|
self.labeler = VsNetImageLabeler(opt['labeler']['label_file'])
|
||||||
|
assert len(self.paths) == 1 # Only a single base-path is supported for labeled images.
|
||||||
|
self.image_paths = self.labeler.get_labeled_paths(self.paths[0])
|
||||||
|
else:
|
||||||
|
self.labeler = None
|
||||||
|
|
||||||
# Just scan the given directory for images of standard types.
|
# Just scan the given directory for images of standard types.
|
||||||
supported_types = ['jpg', 'jpeg', 'png', 'gif']
|
supported_types = ['jpg', 'jpeg', 'png', 'gif']
|
||||||
self.image_paths = []
|
self.image_paths = []
|
||||||
|
@ -74,6 +83,7 @@ class ImageFolderDataset:
|
||||||
h, w, _ = hs[0].shape
|
h, w, _ = hs[0].shape
|
||||||
ls = []
|
ls = []
|
||||||
if self.corrupt_before_downsize:
|
if self.corrupt_before_downsize:
|
||||||
|
hs = [h.copy() for h in hs]
|
||||||
hs = self.corruptor.corrupt_images(hs)
|
hs = self.corruptor.corrupt_images(hs)
|
||||||
for hq in hs:
|
for hq in hs:
|
||||||
ls.append(cv2.resize(hq, (h // self.scale, w // self.scale), interpolation=cv2.INTER_AREA))
|
ls.append(cv2.resize(hq, (h // self.scale, w // self.scale), interpolation=cv2.INTER_AREA))
|
||||||
|
@ -87,6 +97,9 @@ class ImageFolderDataset:
|
||||||
|
|
||||||
def __getitem__(self, item):
|
def __getitem__(self, item):
|
||||||
hq = util.read_img(None, self.image_paths[item], rgb=True)
|
hq = util.read_img(None, self.image_paths[item], rgb=True)
|
||||||
|
if self.labeler:
|
||||||
|
assert hq.shape[0] == hq.shape[1] # This just has not been accomodated yet.
|
||||||
|
dim = hq.shape[0]
|
||||||
|
|
||||||
hs = self.resize_hq([hq])
|
hs = self.resize_hq([hq])
|
||||||
ls = self.synthesize_lq(hs)
|
ls = self.synthesize_lq(hs)
|
||||||
|
@ -95,13 +108,19 @@ class ImageFolderDataset:
|
||||||
hq = torch.from_numpy(np.ascontiguousarray(np.transpose(hs[0], (2, 0, 1)))).float()
|
hq = torch.from_numpy(np.ascontiguousarray(np.transpose(hs[0], (2, 0, 1)))).float()
|
||||||
lq = torch.from_numpy(np.ascontiguousarray(np.transpose(ls[0], (2, 0, 1)))).float()
|
lq = torch.from_numpy(np.ascontiguousarray(np.transpose(ls[0], (2, 0, 1)))).float()
|
||||||
|
|
||||||
return {'lq': lq, 'hq': hq, 'LQ_path': self.image_paths[item], 'HQ_path': self.image_paths[item]}
|
out_dict = {'lq': lq, 'hq': hq, 'LQ_path': self.image_paths[item], 'HQ_path': self.image_paths[item]}
|
||||||
|
if self.labeler:
|
||||||
|
base_file = self.image_paths[item].replace(self.paths[0], "")
|
||||||
|
assert dim % hq.shape[1] == 0
|
||||||
|
lbls, lbl_masks = self.labeler.get_labels_as_tensor(hq, base_file, dim // hq.shape[1])
|
||||||
|
out_dict['labels'] = lbls
|
||||||
|
out_dict['labels_mask'] = lbl_masks
|
||||||
|
return out_dict
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
opt = {
|
opt = {
|
||||||
'name': 'amalgam',
|
'name': 'amalgam',
|
||||||
'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\random_100_1024px'],
|
'paths': ['F:\\4k6k\\datasets\\ns_images\\512_unsupervised\\'],
|
||||||
'weights': [1],
|
'weights': [1],
|
||||||
'target_size': 128,
|
'target_size': 128,
|
||||||
'force_multiple': 32,
|
'force_multiple': 32,
|
||||||
|
@ -110,20 +129,19 @@ if __name__ == '__main__':
|
||||||
'random_corruptions': ['noise-5', 'none'],
|
'random_corruptions': ['noise-5', 'none'],
|
||||||
'num_corrupts_per_image': 1,
|
'num_corrupts_per_image': 1,
|
||||||
'corrupt_before_downsize': True,
|
'corrupt_before_downsize': True,
|
||||||
|
'labeler': {
|
||||||
|
'type': 'patch_labels',
|
||||||
|
'label_file': 'F:\\4k6k\\datasets\\ns_images\\512_unsupervised\\categories.json'
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
ds = ImageFolderDataset(opt)
|
ds = ImageFolderDataset(opt)
|
||||||
import os
|
import os
|
||||||
os.makedirs("debug", exist_ok=True)
|
os.makedirs("debug", exist_ok=True)
|
||||||
for i in range(0, len(ds)):
|
for i in range(0, len(ds)):
|
||||||
o = ds[random.randint(0, len(ds))]
|
o = ds[random.randint(0, len(ds)-1)]
|
||||||
#for k, v in o.items():
|
hq = o['hq']
|
||||||
k = 'lq'
|
masked = (o['labels_mask'] * .5 + .5) * hq
|
||||||
v = o[k]
|
|
||||||
#if 'LQ' in k and 'path' not in k and 'center' not in k:
|
|
||||||
#if 'full' in k:
|
|
||||||
#masked = v[:3, :, :] * v[3]
|
|
||||||
#torchvision.utils.save_image(masked.unsqueeze(0), "debug/%i_%s_masked.png" % (i, k))
|
|
||||||
#v = v[:3, :, :]
|
|
||||||
import torchvision
|
import torchvision
|
||||||
torchvision.utils.save_image(v.unsqueeze(0), "debug/%i_%s.png" % (i, k))
|
torchvision.utils.save_image(hq.unsqueeze(0), "debug/%i_hq.png" % (i,))
|
||||||
|
torchvision.utils.save_image(masked.unsqueeze(0), "debug/%i_masked.png" % (i,))
|
58
codes/data/image_label_parser.py
Normal file
58
codes/data/image_label_parser.py
Normal file
|
@ -0,0 +1,58 @@
|
||||||
|
import os
|
||||||
|
|
||||||
|
import orjson as json
|
||||||
|
# Given a JSON file produced by the VS.net image labeler utility, produces a dict where the keys are image file names
|
||||||
|
# and the values are a list of object with the following properties:
|
||||||
|
# [patch_top, patch_left, patch_height, patch_width, label]
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class VsNetImageLabeler:
|
||||||
|
def __init__(self, label_file):
|
||||||
|
with open(label_file, "r") as read_file:
|
||||||
|
# Format of JSON file:
|
||||||
|
# "<nonsense>" {
|
||||||
|
# "label": "<label>"
|
||||||
|
# "keyBinding": "<nonsense>"
|
||||||
|
# "labeledImages": [
|
||||||
|
# { "path", "label", "patch_top", "patch_left", "patch_height", "patch_width" }
|
||||||
|
# ]
|
||||||
|
# }
|
||||||
|
categories = json.loads(read_file.read())
|
||||||
|
labeled_images = {}
|
||||||
|
available_labels = []
|
||||||
|
for cat in categories.values():
|
||||||
|
for lbli in cat['labeledImages']:
|
||||||
|
pth = lbli['path']
|
||||||
|
if pth not in labeled_images.keys():
|
||||||
|
labeled_images[pth] = []
|
||||||
|
labeled_images[pth].append(lbli)
|
||||||
|
if lbli['label'] not in available_labels:
|
||||||
|
available_labels.append(lbli['label'])
|
||||||
|
|
||||||
|
# Build the label values, from [1,inf]
|
||||||
|
label_value_dict = {}
|
||||||
|
for i, l in enumerate(available_labels):
|
||||||
|
label_value_dict[l] = i+1
|
||||||
|
|
||||||
|
# Insert "labelValue" for each entry.
|
||||||
|
for v in labeled_images.values():
|
||||||
|
for l in v:
|
||||||
|
l['labelValue'] = label_value_dict[l['label']]
|
||||||
|
|
||||||
|
self.labeled_images = labeled_images
|
||||||
|
|
||||||
|
def get_labeled_paths(self, base_path):
|
||||||
|
return [os.path.join(base_path, pth) for pth in self.labeled_images]
|
||||||
|
|
||||||
|
def get_labels_as_tensor(self, hq, img_key, resize_factor):
|
||||||
|
labels = torch.zeros(hq.shape, dtype=torch.long)
|
||||||
|
mask = torch.zeros_like(hq)
|
||||||
|
lbl_list = self.labeled_images[img_key]
|
||||||
|
for patch_lbl in lbl_list:
|
||||||
|
t, l, h, w = patch_lbl['patch_top'] // resize_factor, patch_lbl['patch_left'] // resize_factor, \
|
||||||
|
patch_lbl['patch_height'] // resize_factor, patch_lbl['patch_width'] // resize_factor
|
||||||
|
val = patch_lbl['labelValue']
|
||||||
|
labels[:,t:t+h,l:l+w] = val
|
||||||
|
mask[:,t:t+h,l:l+w] = 1.0
|
||||||
|
return labels, mask
|
Loading…
Reference in New Issue
Block a user