From 0e859a8082e6f2f7f7e4fada6f7db0e24d3138cd Mon Sep 17 00:00:00 2001
From: James Betker <jbetker@gmail.com>
Date: Sat, 29 Aug 2020 09:27:18 -0600
Subject: [PATCH] 4x spsr ref (not workin)

---
 codes/models/archs/SPSR_arch.py | 124 ++++++++++++++++++++++++++++++++
 codes/models/networks.py        |   4 ++
 2 files changed, 128 insertions(+)

diff --git a/codes/models/archs/SPSR_arch.py b/codes/models/archs/SPSR_arch.py
index 29996bd9..7a4acbc1 100644
--- a/codes/models/archs/SPSR_arch.py
+++ b/codes/models/archs/SPSR_arch.py
@@ -470,3 +470,127 @@ class SwitchedSpsrWithRef(nn.Module):
             val["switch_%i_specificity" % (i,)] = means[i]
             val["switch_%i_histogram" % (i,)] = hists[i]
         return val
+
+
+class SwitchedSpsrWithRef4x(nn.Module):
+    def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10):
+        super(SwitchedSpsrWithRef4x, self).__init__()
+        n_upscale = int(math.log(upscale, 2))
+
+        # switch options
+        transformation_filters = nf
+        switch_filters = nf
+        self.transformation_counts = xforms
+        self.reference_processor = ReferenceImageBranch(transformation_filters)
+        multiplx_fn = functools.partial(ReferencingConvMultiplexer, transformation_filters, switch_filters, self.transformation_counts)
+        pretransform_fn = functools.partial(AdaInConvBlock, 512, transformation_filters, transformation_filters)
+        transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5),
+                                         transformation_filters, kernel_size=3, depth=3,
+                                         weight_init_factor=.1)
+
+        # Feature branch
+        self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
+        self.sw1 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
+                                                   pre_transform_block=pretransform_fn, transform_block=transform_fn,
+                                                   attention_norm=True,
+                                                   transform_count=self.transformation_counts, init_temp=init_temperature,
+                                                   add_scalable_noise_to_transforms=True)
+        self.sw2 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
+                                                   pre_transform_block=pretransform_fn, transform_block=transform_fn,
+                                                   attention_norm=True,
+                                                   transform_count=self.transformation_counts, init_temp=init_temperature,
+                                                   add_scalable_noise_to_transforms=True)
+        self.feature_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=False)
+        self.stage1_up_fea = UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False)
+        self.feature_hr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
+
+        # Grad branch
+        self.get_g_nopadding = ImageGradientNoPadding()
+        self.b_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False, bias=False)
+        mplex_grad = functools.partial(ReferencingConvMultiplexer, nf * 2, nf * 2, self.transformation_counts // 2)
+        self.sw_grad = ConfigurableSwitchComputer(transformation_filters, mplex_grad,
+                                                   pre_transform_block=pretransform_fn, transform_block=transform_fn,
+                                                   attention_norm=True,
+                                                   transform_count=self.transformation_counts // 2, init_temp=init_temperature,
+                                                   add_scalable_noise_to_transforms=True)
+        self.stage1_up_grad = UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False)
+
+        # Upsampling
+        self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=True, bias=False)
+        self.grad_hr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
+        # Conv used to output grad branch shortcut.
+        self.grad_branch_output_conv = ConvGnLelu(nf, out_nc, kernel_size=1, norm=False, activation=False, bias=False)
+
+        # Conjoin branch.
+        transform_fn_cat = functools.partial(MultiConvBlock, transformation_filters * 2, int(transformation_filters * 1.5),
+                                         transformation_filters, kernel_size=3, depth=4,
+                                         weight_init_factor=.1)
+        pretransform_fn_cat = functools.partial(AdaInConvBlock, 512, transformation_filters * 2, transformation_filters * 2)
+        self._branch_pretrain_sw = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
+                                                   pre_transform_block=pretransform_fn_cat, transform_block=transform_fn_cat,
+                                                   attention_norm=True,
+                                                   transform_count=self.transformation_counts, init_temp=init_temperature,
+                                                   add_scalable_noise_to_transforms=True)
+        self.stage2_up_fea = UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False)
+        self.stage2_up_grad = UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False)
+        self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=False)
+        self.final_hr_conv1 = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=True, bias=False)
+        self.final_hr_conv2 = ConvGnLelu(nf, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
+        self.switches = [self.sw1, self.sw2, self.sw_grad, self._branch_pretrain_sw]
+        self.attentions = None
+        self.init_temperature = init_temperature
+        self.final_temperature_step = 10000
+
+    def forward(self, x, ref, center_coord):
+        x_grad = self.get_g_nopadding(x)
+        ref = self.reference_processor(ref, center_coord)
+        x = self.model_fea_conv(x)
+
+        x1, a1 = self.sw1((x, ref), True)
+        x2, a2 = self.sw2((x1, ref), True)
+        x_fea = self.feature_lr_conv(x2)
+        x_fea = self.stage1_up_fea(x_fea)
+        x_fea = self.feature_hr_conv2(x_fea)
+
+        x_b_fea = self.b_fea_conv(x_grad)
+        x_grad, a3 = self.sw_grad((x_b_fea, ref), att_in=(torch.cat([x1, x_b_fea], dim=1), ref), output_attention_weights=True)
+        x_grad = self.grad_lr_conv(x_grad)
+        x_grad = self.stage1_up_grad(x_grad)
+        x_grad = self.grad_hr_conv(x_grad)
+        x_out_branch = self.stage2_up_grad(x_grad)
+        x_out_branch = self.grad_branch_output_conv(x_out_branch)
+
+        x__branch_pretrain_cat = torch.cat([x_grad, x_fea], dim=1)
+        x__branch_pretrain_cat, a4 = self._branch_pretrain_sw((x__branch_pretrain_cat, ref), att_in=(x_fea, ref), identity=x_fea, output_attention_weights=True)
+        x_out = self.final_lr_conv(x__branch_pretrain_cat)
+        x_out = self.stage2_up_fea(x_out)
+        x_out = self.final_hr_conv1(x_out)
+        x_out = self.final_hr_conv2(x_out)
+
+        self.attentions = [a1, a2, a3, a4]
+
+        return x_out_branch, x_out, x_grad
+
+    def set_temperature(self, temp):
+        [sw.set_temperature(temp) for sw in self.switches]
+
+    def update_for_step(self, step, experiments_path='.'):
+        if self.attentions:
+            temp = max(1, 1 + self.init_temperature *
+                       (self.final_temperature_step - step) / self.final_temperature_step)
+            self.set_temperature(temp)
+            if step % 200 == 0:
+                output_path = os.path.join(experiments_path, "attention_maps", "a%i")
+                prefix = "attention_map_%i_%%i.png" % (step,)
+                [save_attention_to_image_rgb(output_path % (i,), self.attentions[i], self.transformation_counts, prefix, step) for i in range(len(self.attentions))]
+
+    def get_debug_values(self, step):
+        temp = self.switches[0].switch.temperature
+        mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
+        means = [i[0] for i in mean_hists]
+        hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
+        val = {"switch_temperature": temp}
+        for i in range(len(means)):
+            val["switch_%i_specificity" % (i,)] = means[i]
+            val["switch_%i_histogram" % (i,)] = hists[i]
+        return val
diff --git a/codes/models/networks.py b/codes/models/networks.py
index 78196ef1..6ebb7935 100644
--- a/codes/models/networks.py
+++ b/codes/models/networks.py
@@ -126,6 +126,10 @@ def define_G(opt, net_key='network_G', scale=None):
         xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
         netG = spsr.SwitchedSpsrWithRef(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms, upscale=opt_net['scale'],
                                  init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
+    elif which_model == "spsr_switched_with_ref4x":
+        xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
+        netG = spsr.SwitchedSpsrWithRef4x(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms, upscale=opt_net['scale'],
+                                 init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
 
     # image corruption
     elif which_model == 'HighToLowResNet':