Add geometric loss

This commit is contained in:
James Betker 2020-09-20 16:24:23 -06:00
parent 17dd99b29b
commit 17c569ea62
3 changed files with 89 additions and 12 deletions

View File

@ -1,6 +1,8 @@
import torch.nn import torch.nn
from models.archs.SPSR_arch import ImageGradientNoPadding from models.archs.SPSR_arch import ImageGradientNoPadding
from data.weight_scheduler import get_scheduler_for_opt from data.weight_scheduler import get_scheduler_for_opt
from torch.utils.checkpoint import checkpoint
#from models.steps.recursive_gen_injectors import ImageFlowInjector
# Injectors are a way to sythesize data within a step that can then be used (and reused) by loss functions. # Injectors are a way to sythesize data within a step that can then be used (and reused) by loss functions.
def create_injector(opt_inject, env): def create_injector(opt_inject, env):
@ -136,7 +138,7 @@ class GreyInjector(Injector):
mean = mean.repeat(1, 3, 1, 1) mean = mean.repeat(1, 3, 1, 1)
return {self.opt['out']: mean} return {self.opt['out']: mean}
import torchvision.utils as utils
class InterpolateInjector(Injector): class InterpolateInjector(Injector):
def __init__(self, opt, env): def __init__(self, opt, env):
super(InterpolateInjector, self).__init__(opt, env) super(InterpolateInjector, self).__init__(opt, env)
@ -145,14 +147,3 @@ class InterpolateInjector(Injector):
scaled = torch.nn.functional.interpolate(state[self.opt['in']], scale_factor=self.opt['scale_factor'], scaled = torch.nn.functional.interpolate(state[self.opt['in']], scale_factor=self.opt['scale_factor'],
mode=self.opt['mode']) mode=self.opt['mode'])
return {self.opt['out']: scaled} return {self.opt['out']: scaled}
class ImageFlowInjector(Injector):
def __init__(self, opt, env):
# Requires building this custom cuda kernel. Only require it if explicitly needed.
from models.networks.layers.resample2d_package.resample2d import Resample2d
super(ImageFlowInjector, self).__init__(opt, env)
self.resample = Resample2d()
def forward(self, state):
return self.resample(state[self.opt['in']], state[self.opt['flow']])

View File

@ -16,6 +16,8 @@ def create_generator_loss(opt_loss, env):
return GeneratorGanLoss(opt_loss, env) return GeneratorGanLoss(opt_loss, env)
elif type == 'discriminator_gan': elif type == 'discriminator_gan':
return DiscriminatorGanLoss(opt_loss, env) return DiscriminatorGanLoss(opt_loss, env)
elif type == 'geometric':
return GeometricSimilarityGeneratorLoss(opt_loss, env)
else: else:
raise NotImplementedError raise NotImplementedError
@ -123,6 +125,7 @@ class GeneratorGanLoss(ConfigurableLoss):
else: else:
raise NotImplementedError raise NotImplementedError
import torchvision
class DiscriminatorGanLoss(ConfigurableLoss): class DiscriminatorGanLoss(ConfigurableLoss):
def __init__(self, opt, env): def __init__(self, opt, env):
@ -165,3 +168,53 @@ class DiscriminatorGanLoss(ConfigurableLoss):
else: else:
raise NotImplementedError raise NotImplementedError
import random
import functools
# Computes a loss created by comparing the output of a generator to the output from the same generator when fed an
# input that has been altered randomly by rotation or flip.
# The "real" parameter to this loss is the actual output of the generator (from an injection point)
# The "fake" parameter is the LR input that produced the "real" parameter when fed through the generator.
class GeometricSimilarityGeneratorLoss(ConfigurableLoss):
def __init__(self, opt, env):
super(GeometricSimilarityGeneratorLoss, self).__init__(opt, env)
self.opt = opt
self.generator = opt['generator']
self.criterion = get_basic_criterion_for_name(opt['criterion'], env['device'])
self.gen_input_for_alteration = opt['input_alteration_index'] if 'input_alteration_index' in opt.keys() else 0
self.gen_output_to_use = opt['generator_output_index'] if 'generator_output_index' in opt.keys() else None
self.detach_fake = opt['detach_fake'] if 'detach_fake' in opt.keys() else False
# Returns a random alteration and its counterpart (that undoes the alteration)
def random_alteration(self):
return random.choice([(functools.partial(torch.flip, dims=(2,)), functools.partial(torch.flip, dims=(2,))),
(functools.partial(torch.flip, dims=(3,)), functools.partial(torch.flip, dims=(3,))),
(functools.partial(torch.rot90, k=1, dims=[2,3]), functools.partial(torch.rot90, k=3, dims=[2,3])),
(functools.partial(torch.rot90, k=2, dims=[2,3]), functools.partial(torch.rot90, k=2, dims=[2,3])),
(functools.partial(torch.rot90, k=3, dims=[2,3]), functools.partial(torch.rot90, k=1, dims=[2,3]))])
def forward(self, net, state):
self.metrics = []
net = self.env['generators'][self.generator] # Get the network from an explicit parameter.
# The <net> parameter is not reliable for generator losses since often they are combined with many networks.
fake = extract_params_from_state(self.opt['fake'], state)
alteration, undo_fn = self.random_alteration()
altered = []
for i, t in enumerate(fake):
if i == self.gen_input_for_alteration:
altered.append(alteration(t))
else:
altered.append(t)
if self.detach_fake:
with torch.no_grad():
upsampled_altered = net(*altered)
else:
upsampled_altered = net(*altered)
if self.gen_output_to_use:
upsampled_altered = upsampled_altered[self.gen_output_to_use]
# Undo alteration on HR image
upsampled_altered = undo_fn(upsampled_altered)
return self.criterion(state[self.opt['real']], upsampled_altered)

View File

@ -0,0 +1,33 @@
import models.steps.injectors as injectors
# Uses a generator to synthesize a sequence of images from [in] and injects the results into a list [out]
# All results are checkpointed for memory savings. Recurrent inputs are also detached before being fed back into
# the generator.
class RecurrentImageGeneratorSequenceInjector(injectors.Injector):
def __init__(self, opt, env):
super(RecurrentImageGeneratorSequenceInjector, self).__init__(opt, env)
def forward(self, state):
gen = self.env['generators'][self.opt['generator']]
new_state = {}
results = []
recurrent_input = torch.zeros_like(state[self.input][0])
for input in state[self.input]:
result = checkpoint(gen, input, recurrent_input)
results.append(result)
recurrent_input = result.detach()
new_state = {self.output: results}
return new_state
class ImageFlowInjector(injectors.Injector):
def __init__(self, opt, env):
# Requires building this custom cuda kernel. Only require it if explicitly needed.
from models.networks.layers.resample2d_package.resample2d import Resample2d
super(ImageFlowInjector, self).__init__(opt, env)
self.resample = Resample2d()
def forward(self, state):
return self.resample(state[self.opt['in']], state[self.opt['flow']])