From 2b36ca5f8e970e5fd5e65386db3a30deab938aef Mon Sep 17 00:00:00 2001
From: James Betker <jbetker@gmail.com>
Date: Sun, 16 Jan 2022 21:10:46 -0700
Subject: [PATCH] Revert paired back

---
 .../data/audio/paired_voice_audio_dataset.py  | 165 ++++++++----------
 codes/train.py                                |   2 +-
 2 files changed, 75 insertions(+), 92 deletions(-)

diff --git a/codes/data/audio/paired_voice_audio_dataset.py b/codes/data/audio/paired_voice_audio_dataset.py
index 9d50d1c4..d6123229 100644
--- a/codes/data/audio/paired_voice_audio_dataset.py
+++ b/codes/data/audio/paired_voice_audio_dataset.py
@@ -15,39 +15,49 @@ from models.tacotron2.text import text_to_sequence, sequence_to_text
 from utils.util import opt_get
 
 
-def parse_libri(line, base_path, split="|"):
-    fpt = line.strip().split(split)
-    fpt[0] = os.path.join(base_path, fpt[0])
-    return fpt
+def load_tsv(filename):
+    with open(filename, encoding='utf-8') as f:
+        components = [line.strip().split('\t') for line in f]
+        base = os.path.dirname(filename)
+        filepaths_and_text = [[os.path.join(base, f'{component[1]}'), component[0]] for component in components]
+    return filepaths_and_text
 
 
-def parse_tsv(line, base_path):
-    fpt = line.strip().split('\t')
-    return os.path.join(base_path, f'{fpt[1]}'), fpt[0]
+def load_tsv_aligned_codes(filename):
+    with open(filename, encoding='utf-8') as f:
+        components = [line.strip().split('\t') for line in f]
+        base = os.path.dirname(filename)
+        def convert_string_list_to_tensor(strlist):
+            if strlist.startswith('['):
+                strlist = strlist[1:]
+            if strlist.endswith(']'):
+                strlist = strlist[:-1]
+            as_ints = [int(s) for s in strlist.split(', ')]
+            return torch.tensor(as_ints)
+        filepaths_and_text = [[os.path.join(base, f'{component[1]}'), component[0], convert_string_list_to_tensor(component[2])] for component in components]
+    return filepaths_and_text
 
 
-def parse_tsv_aligned_codes(line, base_path):
-    fpt = line.strip().split('\t')
-    def convert_string_list_to_tensor(strlist):
-        if strlist.startswith('['):
-            strlist = strlist[1:]
-        if strlist.endswith(']'):
-            strlist = strlist[:-1]
-        as_ints = [int(s) for s in strlist.split(', ')]
-        return torch.tensor(as_ints)
-    return os.path.join(base_path, f'{fpt[1]}'), fpt[0], convert_string_list_to_tensor(fpt[2])
+def load_mozilla_cv(filename):
+    with open(filename, encoding='utf-8') as f:
+        components = [line.strip().split('\t') for line in f][1:]  # First line is the header
+        base = os.path.dirname(filename)
+        filepaths_and_text = [[os.path.join(base, f'clips/{component[1]}'), component[2]] for component in components]
+    return filepaths_and_text
 
 
-def parse_mozilla_cv(line, base_path):
-    components = line.strip().split('\t')
-    return os.path.join(base_path, f'clips/{components[1]}'), components[2]
-
-
-def parse_voxpopuli(line, base_path):
-    line = line.strip().split('\t')
-    file, raw_text, norm_text, speaker_id, split, gender = line
-    year = file[:4]
-    return os.path.join(base_path, year, f'{file}.ogg.wav'), raw_text
+def load_voxpopuli(filename):
+    with open(filename, encoding='utf-8') as f:
+        lines = [line.strip().split('\t') for line in f][1:]  # First line is the header
+        base = os.path.dirname(filename)
+        filepaths_and_text = []
+        for line in lines:
+            if len(line) == 0:
+                continue
+            file, raw_text, norm_text, speaker_id, split, gender = line
+            year = file[:4]
+            filepaths_and_text.append([os.path.join(base, year, f'{file}.ogg.wav'), raw_text])
+    return filepaths_and_text
 
 
 class CharacterTokenizer:
@@ -60,16 +70,14 @@ class CharacterTokenizer:
 
 class TextWavLoader(torch.utils.data.Dataset):
     def __init__(self, hparams):
-        self.paths = hparams['path']
-        if not isinstance(self.paths, list):
-            self.paths = [self.paths]
-        self.paths_size_bytes = [os.path.getsize(p) for p in self.paths]
-        self.total_size_bytes = sum(self.paths_size_bytes)
+        self.path = hparams['path']
+        if not isinstance(self.path, list):
+            self.path = [self.path]
 
-        self.fetcher_mode = opt_get(hparams, ['fetcher_mode'], 'lj')
-        if not isinstance(self.fetcher_mode, list):
-            self.fetcher_mode = [self.fetcher_mode]
-        assert len(self.paths) == len(self.fetcher_mode)
+        fetcher_mode = opt_get(hparams, ['fetcher_mode'], 'lj')
+        if not isinstance(fetcher_mode, list):
+            fetcher_mode = [fetcher_mode]
+        assert len(self.path) == len(fetcher_mode)
 
         self.load_conditioning = opt_get(hparams, ['load_conditioning'], False)
         self.conditioning_candidates = opt_get(hparams, ['num_conditioning_candidates'], 1)
@@ -77,8 +85,25 @@ class TextWavLoader(torch.utils.data.Dataset):
         self.debug_failures = opt_get(hparams, ['debug_loading_failures'], False)
         self.load_aligned_codes = opt_get(hparams, ['load_aligned_codes'], False)
         self.aligned_codes_to_audio_ratio = opt_get(hparams, ['aligned_codes_ratio'], 443)
+        self.audiopaths_and_text = []
+        for p, fm in zip(self.path, fetcher_mode):
+            if fm == 'lj' or fm == 'libritts':
+                fetcher_fn = load_filepaths_and_text
+            elif fm == 'tsv':
+                fetcher_fn = load_tsv_aligned_codes if self.load_aligned_codes else load_tsv
+            elif fm == 'mozilla_cv':
+                assert not self.load_conditioning  # Conditioning inputs are incompatible with mozilla_cv
+                fetcher_fn = load_mozilla_cv
+            elif fm == 'voxpopuli':
+                assert not self.load_conditioning  # Conditioning inputs are incompatible with voxpopuli
+                fetcher_fn = load_voxpopuli
+            else:
+                raise NotImplementedError()
+            self.audiopaths_and_text.extend(fetcher_fn(p))
         self.text_cleaners = hparams.text_cleaners
         self.sample_rate = hparams.sample_rate
+        random.seed(hparams.seed)
+        random.shuffle(self.audiopaths_and_text)
         self.max_wav_len = opt_get(hparams, ['max_wav_length'], None)
         if self.max_wav_len is not None:
             self.max_aligned_codes = self.max_wav_len // self.aligned_codes_to_audio_ratio
@@ -109,64 +134,23 @@ class TextWavLoader(torch.utils.data.Dataset):
         assert not torch.any(tokens == 0)
         return tokens
 
-    def load_random_line(self, depth=0):
-        assert depth < 10
-
-        rand_offset = random.randint(0, self.total_size_bytes)
-        for i in range(len(self.paths)):
-            if rand_offset < self.paths_size_bytes[i]:
-                break
-            else:
-                rand_offset -= self.paths_size_bytes[i]
-        path = self.paths[i]
-        fm = self.fetcher_mode[i]
-        with open(path, 'r', encoding='utf-8') as f:
-            f.seek(rand_offset)
-            # Read the rest of the line we seeked to, then the line after that.
-            try:  # This can fail when seeking to a UTF-8 escape byte.
-                f.readline()
-            except:
-                return self.load_random_line(depth=depth + 1)  # On failure, just recurse and try again.
-            l2 = f.readline()
-
-        if l2:
-            try:
-                base_path = os.path.dirname(path)
-                if fm == 'lj' or fm == 'libritts':
-                    return parse_libri(l2, base_path)
-                elif fm == 'tsv':
-                    return parse_tsv_aligned_codes(l2, base_path) if self.load_aligned_codes else parse_tsv(l2, base_path)
-                elif fm == 'mozilla_cv':
-                    assert not self.load_conditioning  # Conditioning inputs are incompatible with mozilla_cv
-                    return parse_mozilla_cv(l2, base_path)
-                elif fm == 'voxpopuli':
-                    assert not self.load_conditioning  # Conditioning inputs are incompatible with voxpopuli
-                    return parse_voxpopuli(l2, base_path)
-                else:
-                    raise NotImplementedError()
-            except:
-                print(f"error parsing random offset: {sys.exc_info()}")
-        return self.load_random_line(depth=depth+1)  # On failure, just recurse and try again.
-
-
     def __getitem__(self, index):
         self.skipped_items += 1
-        apt = self.load_random_line()
         try:
-            tseq, wav, text, path = self.get_wav_text_pair(apt)
+            tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index])
             if text is None or len(text.strip()) == 0:
                 raise ValueError
-            cond, cond_is_self = load_similar_clips(apt[0], self.conditioning_length, self.sample_rate,
+            cond, cond_is_self = load_similar_clips(self.audiopaths_and_text[index][0], self.conditioning_length, self.sample_rate,
                                       n=self.conditioning_candidates) if self.load_conditioning else (None, False)
         except:
             if self.skipped_items > 100:
                 raise  # Rethrow if we have nested too far.
             if self.debug_failures:
-                print(f"error loading {apt[0]} {sys.exc_info()}")
+                print(f"error loading {self.audiopaths_and_text[index][0]} {sys.exc_info()}")
             return self[(index+1) % len(self)]
 
         if self.load_aligned_codes:
-            aligned_codes = apt[2]
+            aligned_codes = self.audiopaths_and_text[index][2]
 
         actually_skipped_items = self.skipped_items
         self.skipped_items = 0
@@ -205,7 +189,7 @@ class TextWavLoader(torch.utils.data.Dataset):
         return res
 
     def __len__(self):
-        return self.total_size_bytes // 1000  # 1000 cuts down a TSV file to the actual length pretty well, but doesn't work with the other formats.
+        return len(self.audiopaths_and_text)
 
 
 class PairedVoiceDebugger:
@@ -240,23 +224,22 @@ class PairedVoiceDebugger:
 
 
 if __name__ == '__main__':
-    batch_sz = 16
+    batch_sz = 8
     params = {
         'mode': 'paired_voice_audio',
-        #'path': ['Y:\\clips\\books1\\transcribed-w2v.tsv'],
-        'path': ['Y:\\bigasr_dataset\\mozcv\\en\\train.tsv'],
-        'fetcher_mode': ['mozilla_cv'],
+        'path': ['Y:\\clips\\books1\\transcribed-w2v.tsv'],
+        'fetcher_mode': ['tsv'],
         'phase': 'train',
         'n_workers': 0,
         'batch_size': batch_sz,
         'max_wav_length': 255995,
         'max_text_length': 200,
         'sample_rate': 22050,
-        'load_conditioning': False,
+        'load_conditioning': True,
         'num_conditioning_candidates': 2,
         'conditioning_length': 44000,
         'use_bpe_tokenizer': True,
-        'load_aligned_codes': False,
+        'load_aligned_codes': True,
     }
     from data import create_dataset, create_dataloader
 
@@ -273,7 +256,7 @@ if __name__ == '__main__':
     for i, b in tqdm(enumerate(dl)):
         for ib in range(batch_sz):
             print(f'{i} {ib} {b["real_text"][ib]}')
-            #save(b, i, ib, 'wav')
-        #if i > 5:
-        #    break
+            save(b, i, ib, 'wav')
+        if i > 5:
+            break
 
diff --git a/codes/train.py b/codes/train.py
index 0e6e6699..d249b3cd 100644
--- a/codes/train.py
+++ b/codes/train.py
@@ -300,7 +300,7 @@ class Trainer:
 
 if __name__ == '__main__':
     parser = argparse.ArgumentParser()
-    parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../experiments/train_gpt_asr_mass_hf2_audio_only_fp32/train_gpt_asr_mass_hf2.yml')
+    parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_diffusion_tts.yml')
     parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
     parser.add_argument('--local_rank', type=int, default=0)
     args = parser.parse_args()