forked from mrq/DL-Art-School
adf for ar-latent tfd
This commit is contained in:
parent
157d5d56c3
commit
34d9d5f202
|
@ -91,6 +91,15 @@ class AudioDiffusionFid(evaluator.Evaluator):
|
|||
elif 'tfd' == mode:
|
||||
self.diffusion_fn = self.perform_diffusion_tfd
|
||||
self.local_modules['vocoder'] = load_univnet_vocoder().cpu()
|
||||
elif 'tfd_ar' == mode:
|
||||
self.local_modules['dvae'] = load_speech_dvae().cpu()
|
||||
self.local_modules['autoregressive'] = load_model_from_config("../experiments/train_gpt_tts_unified.yml",
|
||||
model_name='gpt',
|
||||
also_load_savepoint=False,
|
||||
load_path='../experiments/tortoise_ar.pth',
|
||||
device=torch.device('cpu')).cuda().eval()
|
||||
self.diffusion_fn = self.perform_diffusion_tfd_ar_prior
|
||||
self.local_modules['vocoder'] = load_univnet_vocoder().cpu()
|
||||
|
||||
def perform_diffusion_tts(self, audio, codes, text, sample_rate=5500):
|
||||
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
|
||||
|
@ -219,6 +228,29 @@ class AudioDiffusionFid(evaluator.Evaluator):
|
|||
real_dec = self.local_modules['vocoder'].inference(denormalize_mel(umel))
|
||||
return gen_wav.float(), real_dec, gen_mel, umel, SAMPLE_RATE
|
||||
|
||||
def perform_diffusion_tfd_ar_prior(self, audio, codes, text):
|
||||
SAMPLE_RATE = 24000
|
||||
audio_resampled = torchaudio.functional.resample(audio, 22050, SAMPLE_RATE).unsqueeze(0)
|
||||
vmel = wav_to_mel(audio)
|
||||
umel = wav_to_univnet_mel(audio_resampled, do_normalization=True)
|
||||
|
||||
mel_codes = convert_mel_to_codes(self.local_modules['dvae'], vmel)
|
||||
text_codes = torch.LongTensor(self.bpe_tokenizer.encode(text)).unsqueeze(0).to(vmel.device)
|
||||
cond_inputs = pad_or_truncate(vmel, 132300//256).unsqueeze(1)
|
||||
mlc = self.local_modules['autoregressive'].mel_length_compression
|
||||
auto_latents = self.local_modules['autoregressive'](cond_inputs, text_codes,
|
||||
torch.tensor([text_codes.shape[-1]], device=vmel.device),
|
||||
mel_codes,
|
||||
torch.tensor([mel_codes.shape[-1]*mlc], device=vmel.device),
|
||||
text_first=True, raw_mels=None, return_latent=True)
|
||||
|
||||
gen_mel = self.diffuser.p_sample_loop(self.model, umel.shape,
|
||||
model_kwargs={'codes': auto_latents})
|
||||
|
||||
gen_wav = self.local_modules['vocoder'].inference(denormalize_mel(gen_mel))
|
||||
real_dec = self.local_modules['vocoder'].inference(denormalize_mel(umel))
|
||||
return gen_wav.float(), real_dec, gen_mel, umel, SAMPLE_RATE
|
||||
|
||||
def load_projector(self):
|
||||
"""
|
||||
Builds the CLIP model used to project speech into a latent. This model has fixed parameters and a fixed loading
|
||||
|
@ -335,12 +367,12 @@ if __name__ == '__main__':
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_tts_diffusion_tfd11_quant.yml', 'generator',
|
||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_tts_diffusion_tfd12_ar_inputs.yml', 'generator',
|
||||
also_load_savepoint=False,
|
||||
load_path='X:\\dlas\\experiments\\train_tts_diffusion_tfd12_linear_dvae\\models\\12000_generator.pth').cuda()
|
||||
load_path='X:\\dlas\\experiments\\train_tts_diffusion_tfd12_ar_inputs_pretrain\\models\\4500_generator.pth').cuda()
|
||||
opt_eval = {'eval_tsv': 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv', 'diffusion_steps': 50,
|
||||
'conditioning_free': False, 'conditioning_free_k': 1,
|
||||
'diffusion_schedule': 'linear', 'diffusion_type': 'tfd'}
|
||||
'diffusion_schedule': 'linear', 'diffusion_type': 'tfd_ar'}
|
||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval', 'step': 101, 'device': 'cuda', 'opt': {}}
|
||||
eval = AudioDiffusionFid(diffusion, opt_eval, env)
|
||||
print(eval.perform_eval())
|
||||
|
|
Loading…
Reference in New Issue
Block a user