Support training imagenet classifier

This commit is contained in:
James Betker 2021-01-11 20:09:16 -07:00
parent f3db381fa1
commit 34f8c8641f
12 changed files with 824 additions and 36 deletions

View File

@ -10,22 +10,47 @@ class TorchDataset(Dataset):
"mnist": datasets.MNIST, "mnist": datasets.MNIST,
"fmnist": datasets.FashionMNIST, "fmnist": datasets.FashionMNIST,
"cifar10": datasets.CIFAR10, "cifar10": datasets.CIFAR10,
"imagenet": datasets.ImageNet,
"imagefolder": datasets.ImageFolder
} }
transforms = [] normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
if opt['flip']: if opt['train']:
transforms.append(T.RandomHorizontalFlip()) transforms = [
if opt['crop_sz']: T.RandomResizedCrop(opt['image_size']),
transforms.append(T.RandomCrop(opt['crop_sz'], padding=opt['padding'], padding_mode="reflect")) T.RandomHorizontalFlip(),
transforms.append(T.ToTensor()) T.ToTensor(),
normalize,
]
else:
transforms = [
T.Resize(opt['val_resize']),
T.CenterCrop(opt['image_size']),
T.ToTensor(),
normalize,
]
transforms = T.Compose(transforms) transforms = T.Compose(transforms)
is_for_training = opt['test'] if 'test' in opt.keys() else True self.dataset = DATASET_MAP[opt['dataset']](transform=transforms, **opt['kwargs'])
self.dataset = DATASET_MAP[opt['dataset']](opt['datapath'], train=is_for_training, download=True, transform=transforms)
self.len = opt['fixed_len'] if 'fixed_len' in opt.keys() else len(self.dataset) self.len = opt['fixed_len'] if 'fixed_len' in opt.keys() else len(self.dataset)
def __getitem__(self, item): def __getitem__(self, item):
underlying_item = self.dataset[item][0] underlying_item, lbl = self.dataset[item]
return {'lq': underlying_item, 'hq': underlying_item, return {'lq': underlying_item, 'hq': underlying_item, 'labels': lbl,
'LQ_path': str(item), 'GT_path': str(item)} 'LQ_path': str(item), 'GT_path': str(item)}
def __len__(self): def __len__(self):
return self.len return self.len
if __name__ == '__main__':
opt = {
'flip': True,
'crop_sz': None,
'dataset': 'imagefolder',
'resize': 256,
'center_crop': 224,
'normalize': True,
'kwargs': {
'root': 'F:\\4k6k\\datasets\\images\\imagenet_2017\\val',
}
}
set = TorchDataset(opt)
j = set[0]

View File

@ -0,0 +1,152 @@
# Resnet implementation that adds a u-net style up-conversion component to output values at a
# specified pixel density.
#
# The downsampling part of the network is compatible with the built-in torch resnet for use in
# transfer learning.
#
# Only resnet50 currently supported.
import torch
import torch.nn as nn
from torchvision.models.resnet import BasicBlock, Bottleneck, conv1x1, conv3x3
from torchvision.models.utils import load_state_dict_from_url
import torchvision
from trainer.networks import register_model
from utils.util import checkpoint, opt_get
class ReverseBottleneck(nn.Module):
def __init__(self, inplanes, planes, groups=1, passthrough=False,
base_width=64, dilation=1, norm_layer=None):
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
self.passthrough = passthrough
if passthrough:
self.integrate = conv1x1(inplanes*2, inplanes)
self.bn_integrate = norm_layer(inplanes)
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, groups, dilation)
self.bn2 = norm_layer(width)
self.residual_upsample = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
conv1x1(width, width),
norm_layer(width),
)
self.conv3 = conv1x1(width, planes)
self.bn3 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.upsample = nn.Sequential(
nn.Upsample(scale_factor=2, mode='nearest'),
conv1x1(inplanes, planes),
norm_layer(planes),
)
def forward(self, x, passthrough=None):
if self.passthrough:
x = self.bn_integrate(self.integrate(torch.cat([x, passthrough], dim=1)))
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.residual_upsample(out)
out = self.conv3(out)
out = self.bn3(out)
identity = self.upsample(x)
out = out + identity
out = self.relu(out)
return out
class UResNet50(torchvision.models.resnet.ResNet):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, out_dim=128):
super().__init__(block, layers, num_classes, zero_init_residual, groups, width_per_group,
replace_stride_with_dilation, norm_layer)
if norm_layer is None:
norm_layer = nn.BatchNorm2d
'''
# For reference:
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
'''
uplayers = []
inplanes = 2048
first = True
for i in range(2):
uplayers.append(ReverseBottleneck(inplanes, inplanes // 2, norm_layer=norm_layer, passthrough=not first))
inplanes = inplanes // 2
first = False
self.uplayers = nn.ModuleList(uplayers)
self.tail = nn.Sequential(conv1x1(1024, 512),
norm_layer(512),
nn.ReLU(),
conv3x3(512, 512),
norm_layer(512),
nn.ReLU(),
conv1x1(512, out_dim))
del self.fc # Not used in this implementation and just consumes a ton of GPU memory.
def _forward_impl(self, x):
# Should be the exact same implementation of torchvision.models.resnet.ResNet.forward_impl,
# except using checkpoints on the body conv layers.
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x1 = checkpoint(self.layer1, x)
x2 = checkpoint(self.layer2, x1)
x3 = checkpoint(self.layer3, x2)
x4 = checkpoint(self.layer4, x3)
unused = self.avgpool(x4) # This is performed for instance-level pixpro learning, even though it is unused.
x = checkpoint(self.uplayers[0], x4)
x = checkpoint(self.uplayers[1], x, x3)
#x = checkpoint(self.uplayers[2], x, x2)
#x = checkpoint(self.uplayers[3], x, x1)
return checkpoint(self.tail, torch.cat([x, x2], dim=1))
def forward(self, x):
return self._forward_impl(x)
@register_model
def register_u_resnet50(opt_net, opt):
model = UResNet50(Bottleneck, [3, 4, 6, 3], out_dim=opt_net['odim'])
if opt_get(opt_net, ['use_pretrained_base'], False):
state_dict = load_state_dict_from_url('https://download.pytorch.org/models/resnet50-19c8e357.pth', progress=True)
model.load_state_dict(state_dict, strict=False)
return model
if __name__ == '__main__':
model = UResNet50(Bottleneck, [3,4,6,3])
samp = torch.rand(1,3,224,224)
model(samp)
# For pixpro: attach to "tail.3"

View File

@ -192,7 +192,7 @@ def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
@register_model @register_model
def register_resnet52(opt_net, opt): def register_resnet50(opt_net, opt):
model = resnet50(pretrained=opt_net['pretrained']) model = resnet50(pretrained=opt_net['pretrained'])
if opt_net['custom_head_logits']: if opt_net['custom_head_logits']:
model.fc = nn.Linear(512 * 4, opt_net['custom_head_logits']) model.fc = nn.Linear(512 * 4, opt_net['custom_head_logits'])

View File

@ -10,11 +10,11 @@ from utils.util import opt_get
class UResnetMaskProducer(nn.Module): class UResnetMaskProducer(nn.Module):
def __init__(self, pretrained_uresnet_path, kmeans_centroid_path, mask_scales=[.125,.25,.5,1]): def __init__(self, pretrained_uresnet_path, kmeans_centroid_path, mask_scales=[.125,.25,.5,1], tail_dim=512):
super().__init__() super().__init__()
_, centroids = torch.load(kmeans_centroid_path) _, centroids = torch.load(kmeans_centroid_path)
self.centroids = nn.Parameter(centroids) self.centroids = nn.Parameter(centroids)
self.ures = UResNet50(Bottleneck, [3,4,6,3], out_dim=512).to('cuda') self.ures = UResNet50(Bottleneck, [3,4,6,3], out_dim=tail_dim).to('cuda')
self.mask_scales = mask_scales self.mask_scales = mask_scales
sd = torch.load(pretrained_uresnet_path) sd = torch.load(pretrained_uresnet_path)

View File

@ -48,9 +48,8 @@ class ScaledWeightConv(_ConvNd):
w.FOR_SCALE_SHIFT = True w.FOR_SCALE_SHIFT = True
s.FOR_SCALE_SHIFT = True s.FOR_SCALE_SHIFT = True
# This should probably be configurable at some point. # This should probably be configurable at some point.
for p in self.parameters(): self.weight.DO_NOT_TRAIN = True
if not hasattr(p, "FOR_SCALE_SHIFT"): self.weight.requires_grad = False
p.DO_NOT_TRAIN = True
def _weighted_conv_forward(self, input, weight): def _weighted_conv_forward(self, input, weight):
if self.padding_mode != 'zeros': if self.padding_mode != 'zeros':
@ -60,7 +59,12 @@ class ScaledWeightConv(_ConvNd):
return F.conv2d(input, weight, self.bias, self.stride, return F.conv2d(input, weight, self.bias, self.stride,
self.padding, self.dilation, self.groups) self.padding, self.dilation, self.groups)
def forward(self, input: Tensor, masks: dict) -> Tensor: def forward(self, input: Tensor, masks: dict = None) -> Tensor:
if masks is None:
# An alternate "mode" of operation is the masks are injected as parameters.
assert hasattr(self, 'masks')
masks = self.masks
# This is an exceptionally inefficient way of achieving this functionality. The hope is that if this is any # This is an exceptionally inefficient way of achieving this functionality. The hope is that if this is any
# good at all, this can be made more efficient by performing a single conv pass with multiple masks. # good at all, this can be made more efficient by performing a single conv pass with multiple masks.
weighted_convs = [self._weighted_conv_forward(input, self.weight * scale + shift) for scale, shift in zip(self.weight_scales, self.shifts)] weighted_convs = [self._weighted_conv_forward(input, self.weight * scale + shift) for scale, shift in zip(self.weight_scales, self.shifts)]
@ -72,6 +76,20 @@ class ScaledWeightConv(_ConvNd):
return index_2d(weighted_convs, masks[needed_mask]) return index_2d(weighted_convs, masks[needed_mask])
def create_wrapped_conv_from_template(conv: nn.Conv2d, breadth: int):
wrapped = ScaledWeightConv(conv.in_channels,
conv.out_channels,
conv.kernel_size[0],
conv.stride[0],
conv.padding[0],
conv.dilation[0],
conv.groups,
conv.bias,
conv.padding_mode,
breadth)
return wrapped
# Drop-in implementation of ConvTranspose2d that can apply masked scales&shifts to the convolution weights. # Drop-in implementation of ConvTranspose2d that can apply masked scales&shifts to the convolution weights.
class ScaledWeightConvTranspose(_ConvTransposeNd): class ScaledWeightConvTranspose(_ConvTransposeNd):
def __init__( def __init__(
@ -102,9 +120,8 @@ class ScaledWeightConvTranspose(_ConvTransposeNd):
w.FOR_SCALE_SHIFT = True w.FOR_SCALE_SHIFT = True
s.FOR_SCALE_SHIFT = True s.FOR_SCALE_SHIFT = True
# This should probably be configurable at some point. # This should probably be configurable at some point.
for nm, p in self.named_parameters(): self.weight.DO_NOT_TRAIN = True
if nm == 'weight': self.weight.requires_grad = False
p.DO_NOT_TRAIN = True
def _conv_transpose_forward(self, input, weight, output_size) -> Tensor: def _conv_transpose_forward(self, input, weight, output_size) -> Tensor:
if self.padding_mode != 'zeros': if self.padding_mode != 'zeros':
@ -117,7 +134,12 @@ class ScaledWeightConvTranspose(_ConvTransposeNd):
input, weight, self.bias, self.stride, self.padding, input, weight, self.bias, self.stride, self.padding,
output_padding, self.groups, self.dilation) output_padding, self.groups, self.dilation)
def forward(self, input: Tensor, masks: dict, output_size: Optional[List[int]] = None) -> Tensor: def forward(self, input: Tensor, masks: dict = None, output_size: Optional[List[int]] = None) -> Tensor:
if masks is None:
# An alternate "mode" of operation is the masks are injected as parameters.
assert hasattr(self, 'masks')
masks = self.masks
# This is an exceptionally inefficient way of achieving this functionality. The hope is that if this is any # This is an exceptionally inefficient way of achieving this functionality. The hope is that if this is any
# good at all, this can be made more efficient by performing a single conv pass with multiple masks. # good at all, this can be made more efficient by performing a single conv pass with multiple masks.
weighted_convs = [self._conv_transpose_forward(input, self.weight * scale + shift, output_size) weighted_convs = [self._conv_transpose_forward(input, self.weight * scale + shift, output_size)
@ -128,3 +150,22 @@ class ScaledWeightConvTranspose(_ConvTransposeNd):
assert needed_mask in masks.keys() assert needed_mask in masks.keys()
return index_2d(weighted_convs, masks[needed_mask]) return index_2d(weighted_convs, masks[needed_mask])
def create_wrapped_conv_transpose_from_template(conv: nn.Conv2d, breadth: int):
wrapped = ScaledWeightConvTranspose(conv.in_channels,
conv.out_channels,
conv.kernel_size,
conv.stride,
conv.padding,
conv.output_padding,
conv.groups,
conv.bias,
conv.dilation,
conv.padding_mode,
breadth)
wrapped.weight = conv.weight
wrapped.weight.DO_NOT_TRAIN = True
wrapped.weight.requires_grad = False
wrapped.bias = conv.bias
return wrapped

View File

@ -0,0 +1,441 @@
import torch
import torchvision
from torch import Tensor
import torch.nn as nn
from torchvision.models.utils import load_state_dict_from_url
from typing import Type, Any, Callable, Union, List, Optional, OrderedDict, Iterator
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
'wide_resnet50_2', 'wide_resnet101_2']
from models.vqvae.scaled_weight_conv import ScaledWeightConv
from trainer.networks import register_model
from utils.util import checkpoint
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1, breadth: int = 8) -> ScaledWeightConv:
"""3x3 convolution with padding"""
return ScaledWeightConv(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation, breadth=breadth)
def conv1x1(in_planes: int, out_planes: int, stride: int = 1, breadth: int = 8) -> ScaledWeightConv:
"""1x1 convolution"""
return ScaledWeightConv(in_planes, out_planes, kernel_size=1, stride=stride, bias=False, breadth=breadth)
# Provides similar API to nn.Sequential, but handles feed-forward networks that need to feed masks into their convolutions.
class MaskedSequential(nn.Module):
def __init__(self, *args):
super().__init__()
if len(args) == 1 and isinstance(args[0], OrderedDict):
for key, module in args[0].items():
self.add_module(key, module)
else:
for idx, module in enumerate(args):
self.add_module(str(idx), module)
def __iter__(self) -> Iterator[nn.Module]:
return iter(self._modules.values())
def forward(self, x):
mask = self.masks
for m in self:
if isinstance(m, ScaledWeightConv) or isinstance(m, BasicBlock) or isinstance(m, Bottleneck):
x = m(x, mask)
else:
x = m(x)
return x
class BasicBlock(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
breadth: int = 8
) -> None:
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride, breadth=breadth)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes, breadth=breadth)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor, mask: Tensor) -> Tensor:
identity = x
out = self.conv1(x, mask)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out, mask)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x, mask)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion: int = 4
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
breadth: int = 8
) -> None:
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width, breadth=breadth)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation, breadth=breadth)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion, breadth=breadth)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor, mask: Tensor) -> Tensor:
identity = x
out = self.conv1(x, mask)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out, mask)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out, mask)
out = self.bn3(out)
if self.downsample is not None:
self.downsample.masks = mask
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self,
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
num_classes: int = 1000,
zero_init_residual: bool = False,
groups: int = 1,
width_per_group: int = 64,
replace_stride_with_dilation: Optional[List[bool]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
breadth: int = 8
) -> None:
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = ScaledWeightConv(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False, breadth=breadth)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], breadth)
self.layer2 = self._make_layer(block, 128, layers[1], breadth, stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], breadth, stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], breadth, stride=2,
dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, ScaledWeightConv):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, breadth: int,
stride: int = 1, dilate: bool = False) -> MaskedSequential:
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = MaskedSequential(
conv1x1(self.inplanes, planes * block.expansion, stride, breadth=breadth),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer, breadth=breadth))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer, breadth=breadth))
return MaskedSequential(*layers)
def _forward_impl(self, x: Tensor, mask: Tensor) -> Tensor:
# See note [TorchScript super()]
x = self.conv1(x, mask)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
for m in [self.layer1, self.layer2, self.layer3, self.layer4]:
m.masks = mask
x = checkpoint(self.layer1, x)
x = checkpoint(self.layer2, x)
x = checkpoint(self.layer3, x)
x = checkpoint(self.layer4, x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def forward(self, x: Tensor, mask: Tensor) -> Tensor:
return self._forward_impl(x, mask)
def _resnet(
arch: str,
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
pretrained: bool,
progress: bool,
**kwargs: Any
) -> ResNet:
model = ResNet(block, layers, **kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls[arch],
progress=progress)
model.load_state_dict(state_dict, strict=False)
return model
def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNet-18 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
**kwargs)
def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
**kwargs)
def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNet-50 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
**kwargs)
def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNet-101 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
**kwargs)
def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNet-152 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
**kwargs)
def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 4
return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
pretrained, progress, **kwargs)
def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""ResNeXt-101 32x8d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 8
return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
pretrained, progress, **kwargs)
def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""Wide ResNet-50-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['width_per_group'] = 64 * 2
return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
pretrained, progress, **kwargs)
def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
r"""Wide ResNet-101-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['width_per_group'] = 64 * 2
return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
pretrained, progress, **kwargs)
@register_model
def register_resnet50_weighted_conv(opt_net, opt):
model = resnet50(pretrained=opt_net['pretrained'], **opt_net['kwargs'])
return model
if __name__ == '__main__':
orig = torchvision.models.resnet.resnet50(pretrained=True)
mod = resnet50(pretrained=True, breadth=4)
idim = 224
masks = {}
for j in range(6):
cdim = idim // (2 ** j)
masks[cdim] = torch.zeros((1,1,cdim,cdim), dtype=torch.long)
i = torch.rand(1,3,idim,idim)
r1 = mod(i, masks)
r2 = orig(i)

View File

@ -15,4 +15,5 @@ pytorch_fid==0.1.1
kornia kornia
linear_attention_transformer linear_attention_transformer
vector_quantize_pytorch vector_quantize_pytorch
orjson orjson
einops

View File

@ -59,7 +59,8 @@ def im_norm(x):
def get_image_folder_dataloader(batch_size, num_workers, target_size=256): def get_image_folder_dataloader(batch_size, num_workers, target_size=256):
dataset_opt = dict_to_nonedict({ dataset_opt = dict_to_nonedict({
'name': 'amalgam', 'name': 'amalgam',
'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_1024_square_with_new'], 'paths': ['F:\\4k6k\\datasets\\images\\imagenet_2017\\train'],
#'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_1024_square_with_new'],
#'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_256_full'], #'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_256_full'],
#'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\1024_test'], #'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\1024_test'],
'weights': [1], 'weights': [1],
@ -94,22 +95,23 @@ def produce_latent_dict(model):
id += batch_size id += batch_size
if id > 1000: if id > 1000:
print("Saving checkpoint..") print("Saving checkpoint..")
torch.save((latents, paths), '../results.pth') torch.save((latents, paths), '../imagenet_latent_dict.pth')
id = 0 id = 0
def build_kmeans(): def build_kmeans():
latents, _ = torch.load('../results.pth') latents, _ = torch.load('../imagenet_latent_dict.pth')
latents = torch.cat(latents, dim=0).to('cuda') latents = torch.cat(latents, dim=0).to('cuda')
cluster_ids_x, cluster_centers = kmeans(latents, num_clusters=8, distance="euclidean", device=torch.device('cuda:0')) cluster_ids_x, cluster_centers = kmeans(latents, num_clusters=4, distance="euclidean", device=torch.device('cuda:0'))
torch.save((cluster_ids_x, cluster_centers), '../k_means.pth') torch.save((cluster_ids_x, cluster_centers), '../k_means_imagenet.pth')
def use_kmeans(): def use_kmeans():
_, centers = torch.load('../experiments/k_means_uresnet_512.pth') _, centers = torch.load('../k_means_imagenet.pth')
centers = centers.to('cuda')
batch_size = 8 batch_size = 8
num_workers = 0 num_workers = 0
dataloader = get_image_folder_dataloader(batch_size, num_workers, target_size=512) dataloader = get_image_folder_dataloader(batch_size, num_workers, target_size=256)
colormap = cm.get_cmap('viridis', 8) colormap = cm.get_cmap('viridis', 8)
for i, batch in enumerate(tqdm(dataloader)): for i, batch in enumerate(tqdm(dataloader)):
hq = batch['hq'].to('cuda') hq = batch['hq'].to('cuda')
@ -117,16 +119,16 @@ def use_kmeans():
b, c, h, w = l.shape b, c, h, w = l.shape
dim = b*h*w dim = b*h*w
l = l.permute(0,2,3,1).reshape(dim,c) l = l.permute(0,2,3,1).reshape(dim,c)
pred = kmeans_predict(l, centers, device=l.device) pred = kmeans_predict(l, centers)
pred = pred.reshape(b,h,w) pred = pred.reshape(b,h,w)
img = torch.tensor(colormap(pred[:, :, :].detach().numpy())) img = torch.tensor(colormap(pred[:, :, :].detach().cpu().numpy()))
torchvision.utils.save_image(torch.nn.functional.interpolate(img.permute(0,3,1,2), scale_factor=8, mode="nearest"), f"{i}_categories.png") torchvision.utils.save_image(torch.nn.functional.interpolate(img.permute(0,3,1,2), scale_factor=8, mode="nearest"), f"{i}_categories.png")
torchvision.utils.save_image(hq, f"{i}_hq.png") torchvision.utils.save_image(hq, f"{i}_hq.png")
if __name__ == '__main__': if __name__ == '__main__':
pretrained_path = '../experiments/uresnet_pixpro_512.pth' pretrained_path = '../experiments/train_imagenet_pixpro_resnet/models/66500_generator.pth'
model = UResNet50(Bottleneck, [3,4,6,3], out_dim=512).to('cuda') model = UResNet50(Bottleneck, [3,4,6,3], out_dim=256).to('cuda')
sd = torch.load(pretrained_path) sd = torch.load(pretrained_path)
resnet_sd = {} resnet_sd = {}
for k, v in sd.items(): for k, v in sd.items():
@ -139,5 +141,5 @@ if __name__ == '__main__':
#find_similar_latents(model, 0, 8, structural_euc_dist) #find_similar_latents(model, 0, 8, structural_euc_dist)
#create_latent_database(model, batch_size=32) #create_latent_database(model, batch_size=32)
#produce_latent_dict(model) #produce_latent_dict(model)
#build_kmeans() build_kmeans()
use_kmeans() #use_kmeans()

View File

@ -0,0 +1,26 @@
from glob import glob
import torch
import os
import shutil
if __name__ == '__main__':
index_map_file = 'F:\\4k6k\\datasets\\images\\imagenet_2017\\imagenet_index_to_train_folder_name_map.pth'
ground_truth = 'F:\\4k6k\\datasets\\images\\imagenet_2017\\validation_ground_truth.txt'
val_path = 'F:\\4k6k\\datasets\\images\\imagenet_2017\\val'
index_map = torch.load(index_map_file)
for folder in index_map.values():
os.makedirs(os.path.join(val_path, folder), exist_ok=True)
gtfile = open(ground_truth, 'r')
gtids = []
for line in gtfile:
gtids.append(int(line.strip()))
gtfile.close()
for i, img_file in enumerate(glob(os.path.join(val_path, "*.JPEG"))):
shutil.move(img_file, os.path.join(val_path, index_map[gtids[i]],
os.path.basename(img_file)))
print("Done!")

View File

@ -295,7 +295,7 @@ class Trainer:
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../experiments/train_imgset_vqvae_stage1/train_imgset_vqvae_stage1_5.yml') parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imagenet_pixpro_resnet.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args() args = parser.parse_args()

View File

@ -0,0 +1,97 @@
import torch
import torchvision
from torch.nn.functional import interpolate
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm
import trainer.eval.evaluator as evaluator
from models.vqvae.kmeans_mask_producer import UResnetMaskProducer
from utils.util import opt_get
class CategorizationLossEvaluator(evaluator.Evaluator):
def __init__(self, model, opt_eval, env):
super().__init__(model, opt_eval, env)
self.batch_sz = opt_eval['batch_size']
assert self.batch_sz is not None
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
self.dataset = torchvision.datasets.ImageFolder(
'F:\\4k6k\\datasets\\images\\imagenet_2017\\val',
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
self.dataloader = DataLoader(self.dataset, self.batch_sz, shuffle=False, num_workers=4)
self.gen_output_index = opt_eval['gen_index'] if 'gen_index' in opt_eval.keys() else 0
self.masking = opt_get(opt_eval, ['masking'], True)
if self.masking:
self.mask_producer = UResnetMaskProducer(pretrained_uresnet_path= '../experiments/train_imagenet_pixpro_resnet/models/66500_generator.pth',
kmeans_centroid_path='../experiments/k_means_uresnet_imagenet_256.pth',
mask_scales=[.03125, .0625, .125, .25, .5, 1.0],
tail_dim=256).to('cuda')
def accuracy(self, output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target[None])
res = []
for k in topk:
correct_k = correct[:k].flatten().sum(dtype=torch.float32)
res.append(correct_k * (100.0 / batch_size))
return res
def perform_eval(self):
counter = 0.0
ce_loss = 0.0
top_5_acc = 0.0
top_1_acc = 0.0
self.model.eval()
with torch.no_grad():
for hq, labels in tqdm(self.dataloader):
hq = hq.to(self.env['device'])
labels = labels.to(self.env['device'])
if self.masking:
masks = self.mask_producer(hq)
logits = self.model(hq, masks)
else:
logits = self.model(hq)
if not isinstance(logits, list) and not isinstance(logits, tuple):
logits = [logits]
logits = logits[self.gen_output_index]
ce_loss += torch.nn.functional.cross_entropy(logits, labels).detach()
t1, t5 = self.accuracy(logits, labels, (1, 5))
top_1_acc += t1.detach()
top_5_acc += t5.detach()
counter += len(hq) / self.batch_sz
self.model.train()
return {"val_cross_entropy": ce_loss / counter,
"top_5_accuracy": top_5_acc / counter,
"top_1_accuracy": top_1_acc / counter }
if __name__ == '__main__':
from torchvision.models import resnet50
model = resnet50(pretrained=True).to('cuda')
opt = {
'batch_size': 128,
'gen_index': 0,
'masking': False
}
env = {
'device': 'cuda',
}
eval = CategorizationLossEvaluator(model, opt, env)
print(eval.perform_eval())

View File

@ -107,6 +107,9 @@ class ConfigurableStep(Module):
optSGD = SGDNoBiasMomentum(list(optim_params.values()), lr=opt_config['lr'], momentum=opt_config['momentum'], optSGD = SGDNoBiasMomentum(list(optim_params.values()), lr=opt_config['lr'], momentum=opt_config['momentum'],
weight_decay=opt_config['weight_decay']) weight_decay=opt_config['weight_decay'])
opt = LARC(optSGD, trust_coefficient=opt_config['lars_coefficient']) opt = LARC(optSGD, trust_coefficient=opt_config['lars_coefficient'])
elif self.step_opt['optimizer'] == 'sgd':
from torch.optim import SGD
opt = SGD(list(optim_params.values()), lr=opt_config['lr'], momentum=opt_config['momentum'], weight_decay=opt_config['weight_decay'])
opt._config = opt_config # This is a bit seedy, but we will need these configs later. opt._config = opt_config # This is a bit seedy, but we will need these configs later.
opt._config['network'] = net_name opt._config['network'] = net_name
self.optimizers.append(opt) self.optimizers.append(opt)