diff --git a/codes/data/audio/paired_voice_audio_dataset.py b/codes/data/audio/paired_voice_audio_dataset.py index ed40115f..3625b3ef 100644 --- a/codes/data/audio/paired_voice_audio_dataset.py +++ b/codes/data/audio/paired_voice_audio_dataset.py @@ -23,6 +23,21 @@ def load_tsv(filename): return filepaths_and_text +def load_tsv_aligned_codes(filename): + with open(filename, encoding='utf-8') as f: + components = [line.strip().split('\t') for line in f] + base = os.path.dirname(filename) + def convert_string_list_to_tensor(strlist): + if strlist.startswith('['): + strlist = strlist[1:] + if strlist.endswith(']'): + strlist = strlist[:-1] + as_ints = [int(s) for s in strlist.split(', ')] + return torch.tensor(as_ints) + filepaths_and_text = [[os.path.join(base, f'{component[1]}'), component[0], convert_string_list_to_tensor(component[2])] for component in components] + return filepaths_and_text + + def load_mozilla_cv(filename): with open(filename, encoding='utf-8') as f: components = [line.strip().split('\t') for line in f][1:] # First line is the header @@ -68,12 +83,14 @@ class TextWavLoader(torch.utils.data.Dataset): self.conditioning_candidates = opt_get(hparams, ['num_conditioning_candidates'], 1) self.conditioning_length = opt_get(hparams, ['conditioning_length'], 44100) self.debug_failures = opt_get(hparams, ['debug_loading_failures'], False) + self.load_aligned_codes = opt_get(hparams, ['load_aligned_codes'], False) + self.aligned_codes_to_audio_ratio = opt_get(hparams, ['aligned_codes_ratio'], 443) self.audiopaths_and_text = [] for p, fm in zip(self.path, fetcher_mode): if fm == 'lj' or fm == 'libritts': fetcher_fn = load_filepaths_and_text elif fm == 'tsv': - fetcher_fn = load_tsv + fetcher_fn = load_tsv_aligned_codes if self.load_aligned_codes else load_tsv elif fm == 'mozilla_cv': assert not self.load_conditioning # Conditioning inputs are incompatible with mozilla_cv fetcher_fn = load_mozilla_cv @@ -88,6 +105,8 @@ class TextWavLoader(torch.utils.data.Dataset): random.seed(hparams.seed) random.shuffle(self.audiopaths_and_text) self.max_wav_len = opt_get(hparams, ['max_wav_length'], None) + if self.max_wav_len is not None: + self.max_aligned_codes = self.max_wav_len / self.aligned_codes_to_audio_ratio self.max_text_len = opt_get(hparams, ['max_text_length'], None) assert self.max_wav_len is not None and self.max_text_len is not None self.use_bpe_tokenizer = opt_get(hparams, ['use_bpe_tokenizer'], True) @@ -119,6 +138,8 @@ class TextWavLoader(torch.utils.data.Dataset): self.skipped_items += 1 try: tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index]) + if text is None or len(text.strip()) == 0: + raise ValueError cond, cond_is_self = load_similar_clips(self.audiopaths_and_text[index][0], self.conditioning_length, self.sample_rate, n=self.conditioning_candidates) if self.load_conditioning else (None, False) except: @@ -127,6 +148,10 @@ class TextWavLoader(torch.utils.data.Dataset): if self.debug_failures: print(f"error loading {self.audiopaths_and_text[index][0]} {sys.exc_info()}") return self[(index+1) % len(self)] + + if self.load_aligned_codes: + aligned_codes = self.audiopaths_and_text[index][2] + actually_skipped_items = self.skipped_items self.skipped_items = 0 if wav is None or \ @@ -142,6 +167,9 @@ class TextWavLoader(torch.utils.data.Dataset): orig_text_len = tseq.shape[0] if wav.shape[-1] != self.max_wav_len: wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1])) + if self.load_aligned_codes: + # These codes are aligned to audio inputs, so make sure to pad them as well. + aligned_codes = F.pad(aligned_codes, (0, self.max_aligned_codes-aligned_codes.shape[0])) if tseq.shape[0] != self.max_text_len: tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0])) res = { @@ -156,6 +184,8 @@ class TextWavLoader(torch.utils.data.Dataset): if self.load_conditioning: res['conditioning'] = cond res['conditioning_contains_self'] = cond_is_self + if self.load_aligned_codes: + res['aligned_codes'] = aligned_codes return res def __len__(self): @@ -197,8 +227,8 @@ if __name__ == '__main__': batch_sz = 8 params = { 'mode': 'paired_voice_audio', - 'path': ['Y:\\bigasr_dataset\\hifi_tts\\test.txt'], - 'fetcher_mode': ['libritts'], + 'path': ['Y:\\clips\\books1\\transcribed-w2v.tsv'], + 'fetcher_mode': ['tsv'], 'phase': 'train', 'n_workers': 0, 'batch_size': batch_sz, @@ -209,6 +239,7 @@ if __name__ == '__main__': 'num_conditioning_candidates': 2, 'conditioning_length': 44000, 'use_bpe_tokenizer': True, + 'load_aligned_codes': False, } from data import create_dataset, create_dataloader