mdf fixes + support for tfd-based waveform gen

This commit is contained in:
James Betker 2022-06-19 15:07:24 -06:00
parent cb7569ee5e
commit 368dca18b1

View File

@ -79,24 +79,18 @@ class MusicDiffusionFid(evaluator.Evaluator):
return list(glob(f'{path}/*.wav'))
def perform_diffusion_spec_decode(self, audio, sample_rate=22050):
if sample_rate != sample_rate:
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
else:
real_resampled = audio
real_resampled = audio
audio = audio.unsqueeze(0)
output_shape = (1, 16, audio.shape[-1] // 16)
output_shape = (1, 256, audio.shape[-1] // 256)
mel = self.spec_fn({'in': audio})['out']
gen = self.diffuser.p_sample_loop(self.model, output_shape,
model_kwargs={'aligned_conditioning': mel})
gen = pixel_shuffle_1d(gen, 16)
model_kwargs={'codes': mel})
gen = pixel_shuffle_1d(gen, 256)
return gen, real_resampled, normalize_mel(self.spec_fn({'in': gen})['out']), normalize_mel(mel), sample_rate
def perform_diffusion_from_codes(self, audio, sample_rate=22050):
if sample_rate != sample_rate:
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
else:
real_resampled = audio
real_resampled = audio
audio = audio.unsqueeze(0)
mel = self.spec_fn({'in': audio})['out']
@ -116,10 +110,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
def perform_diffusion_from_codes_quant(self, audio, sample_rate=22050):
if sample_rate != sample_rate:
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
else:
real_resampled = audio
real_resampled = audio
audio = audio.unsqueeze(0)
mel = self.spec_fn({'in': audio})['out']
@ -148,10 +139,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate
def perform_partial_diffusion_from_codes_quant(self, audio, sample_rate=22050, partial_low=0, partial_high=256):
if sample_rate != sample_rate:
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
else:
real_resampled = audio
real_resampled = audio
audio = audio.unsqueeze(0)
mel = self.spec_fn({'in': audio})['out']
@ -174,10 +162,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
def perform_diffusion_from_codes_quant_gradual_decode(self, audio, sample_rate=22050):
if sample_rate != sample_rate:
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
else:
real_resampled = audio
real_resampled = audio
audio = audio.unsqueeze(0)
mel = self.spec_fn({'in': audio})['out']
@ -273,17 +258,17 @@ class MusicDiffusionFid(evaluator.Evaluator):
if __name__ == '__main__':
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_diffusion_tfd_quant.yml', 'generator',
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_waveform_gen.yml', 'generator',
also_load_savepoint=False,
load_path='X:\\dlas\\experiments\\train_music_diffusion_tfd12\\models\\41500_generator_ema.pth'
load_path='X:\\dlas\\experiments\\train_music_waveform_gen_retry\\models\\22000_generator_ema.pth'
).cuda()
opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
'diffusion_steps': 200,
'conditioning_free': True, 'conditioning_free_k': 2,
'diffusion_schedule': 'linear', 'diffusion_type': 'from_codes_quant',
'diffusion_steps': 100,
'conditioning_free': False, 'conditioning_free_k': 1,
'diffusion_schedule': 'linear', 'diffusion_type': 'spec_decode',
#'partial_low': 128, 'partial_high': 192
}
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 605, 'device': 'cuda', 'opt': {}}
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 100, 'device': 'cuda', 'opt': {}}
eval = MusicDiffusionFid(diffusion, opt_eval, env)
print(eval.perform_eval())