forked from mrq/DL-Art-School
mdf fixes + support for tfd-based waveform gen
This commit is contained in:
parent
cb7569ee5e
commit
368dca18b1
|
@ -79,24 +79,18 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
return list(glob(f'{path}/*.wav'))
|
||||
|
||||
def perform_diffusion_spec_decode(self, audio, sample_rate=22050):
|
||||
if sample_rate != sample_rate:
|
||||
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
|
||||
else:
|
||||
real_resampled = audio
|
||||
real_resampled = audio
|
||||
audio = audio.unsqueeze(0)
|
||||
output_shape = (1, 16, audio.shape[-1] // 16)
|
||||
output_shape = (1, 256, audio.shape[-1] // 256)
|
||||
mel = self.spec_fn({'in': audio})['out']
|
||||
gen = self.diffuser.p_sample_loop(self.model, output_shape,
|
||||
model_kwargs={'aligned_conditioning': mel})
|
||||
gen = pixel_shuffle_1d(gen, 16)
|
||||
model_kwargs={'codes': mel})
|
||||
gen = pixel_shuffle_1d(gen, 256)
|
||||
|
||||
return gen, real_resampled, normalize_mel(self.spec_fn({'in': gen})['out']), normalize_mel(mel), sample_rate
|
||||
|
||||
def perform_diffusion_from_codes(self, audio, sample_rate=22050):
|
||||
if sample_rate != sample_rate:
|
||||
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
|
||||
else:
|
||||
real_resampled = audio
|
||||
real_resampled = audio
|
||||
audio = audio.unsqueeze(0)
|
||||
|
||||
mel = self.spec_fn({'in': audio})['out']
|
||||
|
@ -116,10 +110,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
|
||||
|
||||
def perform_diffusion_from_codes_quant(self, audio, sample_rate=22050):
|
||||
if sample_rate != sample_rate:
|
||||
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
|
||||
else:
|
||||
real_resampled = audio
|
||||
real_resampled = audio
|
||||
audio = audio.unsqueeze(0)
|
||||
|
||||
mel = self.spec_fn({'in': audio})['out']
|
||||
|
@ -148,10 +139,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate
|
||||
|
||||
def perform_partial_diffusion_from_codes_quant(self, audio, sample_rate=22050, partial_low=0, partial_high=256):
|
||||
if sample_rate != sample_rate:
|
||||
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
|
||||
else:
|
||||
real_resampled = audio
|
||||
real_resampled = audio
|
||||
audio = audio.unsqueeze(0)
|
||||
|
||||
mel = self.spec_fn({'in': audio})['out']
|
||||
|
@ -174,10 +162,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
|
||||
|
||||
def perform_diffusion_from_codes_quant_gradual_decode(self, audio, sample_rate=22050):
|
||||
if sample_rate != sample_rate:
|
||||
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
|
||||
else:
|
||||
real_resampled = audio
|
||||
real_resampled = audio
|
||||
audio = audio.unsqueeze(0)
|
||||
|
||||
mel = self.spec_fn({'in': audio})['out']
|
||||
|
@ -273,17 +258,17 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_diffusion_tfd_quant.yml', 'generator',
|
||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_waveform_gen.yml', 'generator',
|
||||
also_load_savepoint=False,
|
||||
load_path='X:\\dlas\\experiments\\train_music_diffusion_tfd12\\models\\41500_generator_ema.pth'
|
||||
load_path='X:\\dlas\\experiments\\train_music_waveform_gen_retry\\models\\22000_generator_ema.pth'
|
||||
).cuda()
|
||||
opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
|
||||
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
|
||||
'diffusion_steps': 200,
|
||||
'conditioning_free': True, 'conditioning_free_k': 2,
|
||||
'diffusion_schedule': 'linear', 'diffusion_type': 'from_codes_quant',
|
||||
'diffusion_steps': 100,
|
||||
'conditioning_free': False, 'conditioning_free_k': 1,
|
||||
'diffusion_schedule': 'linear', 'diffusion_type': 'spec_decode',
|
||||
#'partial_low': 128, 'partial_high': 192
|
||||
}
|
||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 605, 'device': 'cuda', 'opt': {}}
|
||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 100, 'device': 'cuda', 'opt': {}}
|
||||
eval = MusicDiffusionFid(diffusion, opt_eval, env)
|
||||
print(eval.perform_eval())
|
||||
|
|
Loading…
Reference in New Issue
Block a user