From 4093e387173895fe145f5c63a1f33958dc985cf4 Mon Sep 17 00:00:00 2001 From: James Betker Date: Sun, 22 May 2022 23:10:58 -0600 Subject: [PATCH] revert flat diffusion back... --- codes/models/audio/music/flat_diffusion.py | 167 ++++++++++----------- codes/trainer/eval/music_diffusion_fid.py | 26 ++-- 2 files changed, 92 insertions(+), 101 deletions(-) diff --git a/codes/models/audio/music/flat_diffusion.py b/codes/models/audio/music/flat_diffusion.py index 0d6a343a..79c222bc 100644 --- a/codes/models/audio/music/flat_diffusion.py +++ b/codes/models/audio/music/flat_diffusion.py @@ -1,17 +1,13 @@ -import os import random import torch import torch.nn as nn import torch.nn.functional as F -import torchvision from torch import autocast from models.arch_util import ResBlock from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, TimestepBlock -from scripts.audio.gen.use_mel2vec_codes import collapse_codegroups -from trainer.injectors.audio_injectors import normalize_mel from trainer.networks import register_model from utils.util import checkpoint @@ -111,20 +107,6 @@ class DiffusionLayer(TimestepBlock): return self.attn(y) -class NonTimestepResidualAttentionNorm(nn.Module): - def __init__(self, model_channels, dropout): - super().__init__() - self.resblk = ResBlock(dims=1, channels=model_channels, dropout=dropout) - self.attn = AttentionBlock(model_channels, num_heads=model_channels//64, relative_pos_embeddings=True) - self.norm = nn.GroupNorm(num_groups=8, num_channels=model_channels) - - def forward(self, x): - h = self.resblk(x) - h = self.norm(h) - h = self.attn(h) - return h - - class FlatDiffusion(nn.Module): def __init__( self, @@ -141,6 +123,7 @@ class FlatDiffusion(nn.Module): # Parameters for regularization. layer_drop=.1, unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training. + train_mel_head=False, ): super().__init__() @@ -154,7 +137,6 @@ class FlatDiffusion(nn.Module): self.layer_drop = layer_drop self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1) - # TODO: I'd really like to see if this could be ablated. It seems useless to me: why can't the embedding just learn this mapping directly? self.time_embed = nn.Sequential( linear(model_channels, model_channels), nn.SiLU(), @@ -168,23 +150,32 @@ class FlatDiffusion(nn.Module): self.embeddings = nn.ModuleList([nn.Embedding(in_vectors, model_channels//in_groups) for _ in range(in_groups)]) self.latent_conditioner = nn.Sequential( nn.Conv1d(in_latent_channels, model_channels, 3, padding=1), - NonTimestepResidualAttentionNorm(model_channels, dropout), - NonTimestepResidualAttentionNorm(model_channels, dropout), - nn.Conv1d(model_channels, model_channels, 3, padding=1), + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), ) - self.latent_fade = nn.Parameter(torch.zeros(1,model_channels,1)) self.code_converter = nn.Sequential( - NonTimestepResidualAttentionNorm(model_channels, dropout), - NonTimestepResidualAttentionNorm(model_channels, dropout), - NonTimestepResidualAttentionNorm(model_channels, dropout), - nn.Conv1d(model_channels, model_channels, 3, padding=1), + ResBlock(dims=1, channels=model_channels, dropout=dropout), + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), + ResBlock(dims=1, channels=model_channels, dropout=dropout), + AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), + ResBlock(dims=1, channels=model_channels, dropout=dropout), ) - self.conditioning_embedder = nn.Sequential(nn.Conv1d(in_channels, model_channels // 2, 3, padding=1, stride=2), - nn.Conv1d(model_channels//2, model_channels,3,padding=1,stride=2), - NonTimestepResidualAttentionNorm(model_channels, dropout), - NonTimestepResidualAttentionNorm(model_channels, dropout), - NonTimestepResidualAttentionNorm(model_channels, dropout)) + self.code_norm = normalization(model_channels) + self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2), + nn.Conv1d(model_channels, model_channels*2,3,padding=1,stride=2), + AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False), + AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False), + AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False), + AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False), + AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False)) self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1)) + self.conditioning_timestep_integrator = TimestepEmbedSequential( + DiffusionLayer(model_channels, dropout, num_heads), + DiffusionLayer(model_channels, dropout, num_heads), + DiffusionLayer(model_channels, dropout, num_heads), + ) self.integrating_conv = nn.Conv1d(model_channels*2, model_channels, kernel_size=1) self.mel_head = nn.Conv1d(model_channels, in_channels, kernel_size=3, padding=1) @@ -197,97 +188,97 @@ class FlatDiffusion(nn.Module): zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)), ) - self.debug_codes = {} + if train_mel_head: + for m in [self.conditioning_timestep_integrator, self.integrating_conv, self.layers, + self.out]: + for p in m.parameters(): + p.requires_grad = False + p.DO_NOT_TRAIN = True def get_grad_norm_parameter_groups(self): groups = { - 'contextual_embedder': list(self.conditioning_embedder.parameters()), - 'layers': list(self.layers.parameters()) + list(self.integrating_conv.parameters()) + list(self.inp_block.parameters()), + 'minicoder': list(self.contextual_embedder.parameters()), + 'layers': list(self.layers.parameters()), 'code_converters': list(self.embeddings.parameters()) + list(self.code_converter.parameters()) + list(self.latent_conditioner.parameters()), + 'timestep_integrator': list(self.conditioning_timestep_integrator.parameters()) + list(self.integrating_conv.parameters()), 'time_embed': list(self.time_embed.parameters()), } return groups - def timestep_independent(self, codes, conditioning_input, expected_seq_len, prenet_latent=None, return_code_pred=False): - cond_emb = self.conditioning_embedder(conditioning_input)[:, :, 0] + def timestep_independent(self, aligned_conditioning, conditioning_input, expected_seq_len, return_code_pred): + # Shuffle aligned_latent to BxCxS format + if is_latent(aligned_conditioning): + aligned_conditioning = aligned_conditioning.permute(0, 2, 1) - # Shuffle prenet_latent to BxCxS format - if prenet_latent is not None: - prenet_latent = prenet_latent.permute(0, 2, 1) - - code_emb = [embedding(codes[:, :, i]) for i, embedding in enumerate(self.embeddings)] - code_emb = torch.cat(code_emb, dim=-1).permute(0,2,1) - if prenet_latent is not None: - latent_conditioning = self.latent_conditioner(prenet_latent) - code_emb = code_emb + latent_conditioning * self.latent_fade + # Note: this block does not need to repeated on inference, since it is not timestep-dependent or x-dependent. + speech_conditioning_input = conditioning_input.unsqueeze(1) if len( + conditioning_input.shape) == 3 else conditioning_input + conds = [] + for j in range(speech_conditioning_input.shape[1]): + conds.append(self.contextual_embedder(speech_conditioning_input[:, j])) + conds = torch.cat(conds, dim=-1) + cond_emb = conds.mean(dim=-1) + cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1) + if is_latent(aligned_conditioning): + code_emb = self.latent_conditioner(aligned_conditioning) + else: + code_emb = [embedding(aligned_conditioning[:, :, i]) for i, embedding in enumerate(self.embeddings)] + code_emb = torch.cat(code_emb, dim=-1).permute(0,2,1) unconditioned_batches = torch.zeros((code_emb.shape[0], 1, 1), device=code_emb.device) # Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance. if self.training and self.unconditioned_percentage > 0: unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1), device=code_emb.device) < self.unconditioned_percentage - code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(codes.shape[0], 1, 1), + code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(aligned_conditioning.shape[0], 1, 1), code_emb) - code_emb = self.code_converter(code_emb) - expanded_code_emb = F.interpolate(code_emb, size=expected_seq_len, mode='nearest') + expanded_code_emb = self.code_converter(expanded_code_emb) + expanded_code_emb = self.code_norm(expanded_code_emb) * (1 + cond_scale.unsqueeze(-1)) + cond_shift.unsqueeze(-1) + if not return_code_pred: - return expanded_code_emb, cond_emb + return expanded_code_emb else: - # Perform the mel_head computation on the pre-exanded code embeddings, then interpolate it separately. - mel_pred = self.mel_head(code_emb) - mel_pred = F.interpolate(mel_pred, size=expected_seq_len, mode='nearest') - # Multiply mel_pred by !unconditioned_branches, which drops the gradient on unconditioned branches. - # This is because we don't want that gradient being used to train parameters through the codes_embedder as - # it unbalances contributions to that network from the MSE loss. + mel_pred = self.mel_head(expanded_code_emb) + # Multiply mel_pred by !unconditioned_branches, which drops the gradient on unconditioned branches. This is because we don't want that gradient being used to train parameters through the codes_embedder as it unbalances contributions to that network from the MSE loss. mel_pred = mel_pred * unconditioned_batches.logical_not() - return expanded_code_emb, cond_emb, mel_pred + return expanded_code_emb, mel_pred - def forward(self, x, timesteps, - codes=None, conditioning_input=None, prenet_latent=None, - precomputed_code_embeddings=None, precomputed_cond_embeddings=None, - conditioning_free=False, return_code_pred=False): + def forward(self, x, timesteps, aligned_conditioning=None, conditioning_input=None, precomputed_aligned_embeddings=None, conditioning_free=False, return_code_pred=False): """ Apply the model to an input batch. - There are two ways to call this method: - 1) Specify codes, conditioning_input and optionally prenet_latent - 2) Specify precomputed_code_embeddings and precomputed_cond_embeddings, retrieved by calling timestep_independent yourself. - :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. - :param codes: an aligned latent or sequence of tokens providing useful data about the sample to be produced. + :param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced. :param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded. - :param prenet_latent: optional latent vector aligned with codes derived from a prior network. - :param precomputed_code_embeddings: Code embeddings returned from self.timestep_independent() - :param precomputed_cond_embeddings: Conditional embeddings returned from self.timestep_independent() + :param precomputed_aligned_embeddings: Embeddings returned from self.timestep_independent() :param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered. :return: an [N x C x ...] Tensor of outputs. """ - if precomputed_code_embeddings is not None: - assert precomputed_cond_embeddings is not None, "Must specify both precomputed embeddings if one is specified" - assert codes is None and conditioning_input is None and prenet_latent is None, "Do not provide precomputed embeddings and the other parameters. It is unclear what you want me to do here." - assert not (return_code_pred and precomputed_code_embeddings is not None), "I cannot compute a code_pred output for you." + assert precomputed_aligned_embeddings is not None or (aligned_conditioning is not None and conditioning_input is not None) + assert not (return_code_pred and precomputed_aligned_embeddings is not None) # These two are mutually exclusive. unused_params = [] - if not return_code_pred: - unused_params.extend(list(self.mel_head.parameters())) if conditioning_free: code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1]) unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters())) unused_params.extend(list(self.latent_conditioner.parameters())) else: - if precomputed_code_embeddings is not None: - code_emb = precomputed_code_embeddings - cond_emb = precomputed_cond_embeddings + if precomputed_aligned_embeddings is not None: + code_emb = precomputed_aligned_embeddings else: - code_emb, cond_emb, mel_pred = self.timestep_independent(codes, conditioning_input, x.shape[-1], prenet_latent, True) - if prenet_latent is None: - unused_params.extend(list(self.latent_conditioner.parameters()) + [self.latent_fade]) + code_emb, mel_pred = self.timestep_independent(aligned_conditioning, conditioning_input, x.shape[-1], True) + if is_latent(aligned_conditioning): + unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters())) + else: + unused_params.extend(list(self.latent_conditioner.parameters())) + unused_params.append(self.unconditioned_embedding) - blk_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + cond_emb + time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + code_emb = self.conditioning_timestep_integrator(code_emb, time_emb) x = self.inp_block(x) x = torch.cat([x, code_emb], dim=1) x = self.integrating_conv(x) @@ -298,7 +289,7 @@ class FlatDiffusion(nn.Module): else: # First and last blocks will have autocast disabled for improved precision. with autocast(x.device.type, enabled=self.enable_fp16 and i != 0): - x = lyr(x, blk_emb) + x = lyr(x, time_emb) x = x.float() out = self.out(x) @@ -318,7 +309,7 @@ class FlatDiffusion(nn.Module): conditioning_input.shape) == 3 else conditioning_input conds = [] for j in range(speech_conditioning_input.shape[1]): - conds.append(self.conditioning_embedder(speech_conditioning_input[:, j])) + conds.append(self.contextual_embedder(speech_conditioning_input[:, j])) conds = torch.cat(conds, dim=-1) return conds.mean(dim=-1) @@ -329,11 +320,13 @@ def register_flat_diffusion(opt_net, opt): if __name__ == '__main__': clip = torch.randn(2, 256, 400) - aligned_latent = torch.randn(2,100,512) + aligned_latent = torch.randn(2,388,512) aligned_sequence = torch.randint(0,8,(2,100,8)) cond = torch.randn(2, 256, 400) ts = torch.LongTensor([600, 600]) - model = FlatDiffusion(512, layer_drop=.3, unconditioned_percentage=.5) + model = FlatDiffusion(512, layer_drop=.3, unconditioned_percentage=.5, train_mel_head=True) + # Test with latent aligned conditioning + #o = model(clip, ts, aligned_latent, cond) + # Test with sequence aligned conditioning o = model(clip, ts, aligned_sequence, cond, return_code_pred=True) - o = model(clip, ts, aligned_sequence, cond, aligned_latent) diff --git a/codes/trainer/eval/music_diffusion_fid.py b/codes/trainer/eval/music_diffusion_fid.py index 80a0c580..aaacbfd6 100644 --- a/codes/trainer/eval/music_diffusion_fid.py +++ b/codes/trainer/eval/music_diffusion_fid.py @@ -68,7 +68,6 @@ class MusicDiffusionFid(evaluator.Evaluator): self.diffusion_fn = self.perform_diffusion_from_codes self.local_modules['codegen'] = get_music_codegen() self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 22000, 'normalize': True, 'in': 'in', 'out': 'out'}, {}) - self.spec_100_fn = TorchMelSpectrogramInjector({'n_mel_channels': 100, 'mel_fmax': 22000, 'normalize': True, 'in': 'in', 'out': 'out'}, {}) def load_data(self, path): return list(glob(f'{path}/*.wav')) @@ -167,21 +166,20 @@ class MusicDiffusionFid(evaluator.Evaluator): mel = self.spec_fn({'in': audio})['out'] codegen = self.local_modules['codegen'].to(mel.device) codes = codegen.get_codes(mel) - mel100 = self.spec_100_fn({'in': audio})['out'] - mel100_norm = normalize_mel(mel100) - precomputed_codes, precomputed_cond = self.model.timestep_independent(codes=codes, conditioning_input=mel100_norm[:,:,:112], - expected_seq_len=mel100_norm.shape[-1], return_code_pred=False) - gen_mel = self.diffuser.p_sample_loop(self.model, mel100_norm.shape, - model_kwargs={'precomputed_code_embeddings': precomputed_codes, 'precomputed_cond_embeddings': precomputed_cond}) + mel_norm = normalize_mel(mel) + precomputed = self.model.timestep_independent(aligned_conditioning=codes, conditioning_input=mel[:,:,:112], + expected_seq_len=mel_norm.shape[-1], return_code_pred=False) + gen_mel = self.diffuser.p_sample_loop(self.model, mel_norm.shape, noise=torch.zeros_like(mel_norm), + model_kwargs={'precomputed_aligned_embeddings': precomputed}) - #gen_mel_denorm = denormalize_mel(gen_mel) - #output_shape = (1,16,audio.shape[-1]//16) - #self.spec_decoder = self.spec_decoder.to(audio.device) - #gen_wav = self.diffuser.p_sample_loop(self.spec_decoder, output_shape, model_kwargs={'aligned_conditioning': gen_mel_denorm}) - #gen_wav = pixel_shuffle_1d(gen_wav, 16) + gen_mel_denorm = denormalize_mel(gen_mel) + output_shape = (1,16,audio.shape[-1]//16) + self.spec_decoder = self.spec_decoder.to(audio.device) + gen_wav = self.diffuser.p_sample_loop(self.spec_decoder, output_shape, model_kwargs={'aligned_conditioning': gen_mel_denorm}) + gen_wav = pixel_shuffle_1d(gen_wav, 16) + + return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate - #return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate - return real_resampled.unsqueeze(0), real_resampled, gen_mel, mel100_norm, sample_rate def project(self, sample, sample_rate): sample = torchaudio.functional.resample(sample, sample_rate, 22050)