diff --git a/codes/scripts/extract_square_images.py b/codes/scripts/extract_square_images.py index e5e46501..fef469d4 100644 --- a/codes/scripts/extract_square_images.py +++ b/codes/scripts/extract_square_images.py @@ -13,16 +13,17 @@ import torch def main(): split_img = False opt = {} - opt['n_thread'] = 4 - opt['compression_level'] = 98 # JPEG compression quality rating. + opt['n_thread'] = 7 + opt['compression_level'] = 95 # JPEG compression quality rating. # CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer # compression time. If read raw images during training, use 0 for faster IO speed. opt['dest'] = 'file' - opt['input_folder'] = ['F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_1024_square_with_new'] - opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_384_full' - opt['imgsize'] = 384 - #opt['bottom_crop'] = 120 + opt['input_folder'] = ['F:\\4k6k\\datasets\\ns_images\\imagesets\\pn_coven\\working'] + opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\pn_coven\\cropped' + opt['imgsize'] = 1024 + opt['bottom_crop'] = .1 + opt['keep_folder'] = True save_folder = opt['save_folder'] if not osp.exists(save_folder): @@ -58,11 +59,14 @@ class TiledDataset(data.Dataset): # Perform explicit crops first. These are generally used to get rid of watermarks so we dont even want to # consider these areas of the image. if 'bottom_crop' in self.opt.keys(): - img = img[:-self.opt['bottom_crop'], :, :] + bc = self.opt['bottom_crop'] + if bc > 0 and bc < 1: + bc = int(bc * img.shape[0]) + img = img[:-bc, :, :] h, w, c = img.shape # Uncomment to filter any image that doesnt meet a threshold size. - if min(h,w) < 512: + if min(h,w) < self.opt['imgsize']: print("Skipping due to threshold") return None @@ -71,7 +75,17 @@ class TiledDataset(data.Dataset): # Crop the image so that only the center is left, since this is often the most salient part of the image. img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :] img = cv2.resize(img, (self.opt['imgsize'], self.opt['imgsize']), interpolation=cv2.INTER_AREA) - cv2.imwrite(osp.join(self.opt['save_folder'], basename + ".jpg"), img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']]) + output_folder = self.opt['save_folder'] + if self.opt['keep_folder']: + # Attempt to find the folder name one level above opt['input_folder'] and use that. + pts = [os.path.dirname(path)] + while pts[0] != self.opt['input_folder'][0]: + pts = os.path.split(pts[0]) + output_folder = osp.join(self.opt['save_folder'], pts[-1]) + os.makedirs(output_folder, exist_ok=True) + if not basename.endswith(".jpg"): + basename = basename + ".jpg" + cv2.imwrite(osp.join(output_folder, basename + ".jpg"), img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']]) return None def __len__(self):