forked from mrq/DL-Art-School
tfdpc_v3 inference
This commit is contained in:
parent
7a9c4310e8
commit
42de09d983
|
@ -1,20 +1,18 @@
|
|||
import itertools
|
||||
from time import time
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
import torchvision
|
||||
|
||||
from models.arch_util import ResBlock, AttentionBlock
|
||||
from models.audio.music.gpt_music2 import UpperEncoder, GptMusicLower
|
||||
from models.audio.music.music_quantizer2 import MusicQuantizer2
|
||||
from models.audio.tts.lucidrains_dvae import DiscreteVAE
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import TimestepBlock
|
||||
from models.lucidrains.x_transformers import Encoder, Attention, RMSScaleShiftNorm, RotaryEmbedding, \
|
||||
FeedForward
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint, print_network
|
||||
from utils.util import checkpoint, print_network, load_audio
|
||||
|
||||
|
||||
class TimestepRotaryEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
|
@ -147,7 +145,7 @@ class TransformerDiffusionWithPointConditioning(nn.Module):
|
|||
def forward(self, x, timesteps, conditioning_input, conditioning_free=False):
|
||||
unused_params = []
|
||||
if conditioning_free:
|
||||
cond = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1)
|
||||
cond = self.unconditioned_embedding
|
||||
else:
|
||||
cond = conditioning_input
|
||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||
|
@ -243,7 +241,7 @@ class TransformerDiffusionWithConditioningEncoder(nn.Module):
|
|||
|
||||
|
||||
@register_model
|
||||
def register_tfdpc2(opt_net, opt):
|
||||
def register_tfdpc3(opt_net, opt):
|
||||
return TransformerDiffusionWithPointConditioning(**opt_net['kwargs'])
|
||||
|
||||
|
||||
|
@ -258,11 +256,93 @@ def test_cheater_model():
|
|||
ts = torch.LongTensor([600, 600])
|
||||
|
||||
# For music:
|
||||
model = TransformerDiffusionWithConditioningEncoder(model_channels=1024)
|
||||
model = TransformerDiffusionWithConditioningEncoder(in_channels=256, out_channels=512, model_channels=1024,
|
||||
contraction_dim=512, num_heads=8, num_layers=24, dropout=0,
|
||||
unconditioned_percentage=.4)
|
||||
print_network(model)
|
||||
o = model(clip, ts, cl)
|
||||
pg = model.get_grad_norm_parameter_groups()
|
||||
|
||||
|
||||
def inference_tfdpc3_with_cheater():
|
||||
with torch.no_grad():
|
||||
os.makedirs('results/tfdpc_v3', exist_ok=True)
|
||||
|
||||
#length = 40 * 22050 // 256 // 16
|
||||
samples = {'electronica1': load_audio('Y:\\split\\yt-music-eval\\00001.wav', 22050),
|
||||
'electronica2': load_audio('Y:\\split\\yt-music-eval\\00272.wav', 22050),
|
||||
'e_guitar': load_audio('Y:\\split\\yt-music-eval\\00227.wav', 22050),
|
||||
'creep': load_audio('Y:\\separated\\bt-music-3\\[2007] MTV Unplugged (Live) (Japan Edition)\\05 - Creep [Cover On Radiohead]\\00001\\no_vocals.wav', 22050),
|
||||
'rock1': load_audio('Y:\\separated\\bt-music-3\\2016 - Heal My Soul\\01 - Daze Of The Night\\00000\\no_vocals.wav', 22050),
|
||||
'kiss': load_audio('Y:\\separated\\bt-music-3\\KISS (2001) Box Set CD1\\02 Deuce (Demo Version)\\00000\\no_vocals.wav', 22050),
|
||||
'purp': load_audio('Y:\\separated\\bt-music-3\\Shades of Deep Purple\\11 Help (Alternate Take)\\00001\\no_vocals.wav', 22050),
|
||||
'western_stars': load_audio('Y:\\separated\\bt-music-3\\Western Stars\\01 Hitch Hikin\'\\00000\\no_vocals.wav', 22050),
|
||||
'silk': load_audio('Y:\\separated\\silk\\MonstercatSilkShowcase\\890\\00007\\no_vocals.wav', 22050),
|
||||
'long_electronica': load_audio('C:\\Users\\James\\Music\\longer_sample.wav', 22050),}
|
||||
for k, sample in samples.items():
|
||||
sample = sample.cuda()
|
||||
length = sample.shape[0]//256//16
|
||||
|
||||
model = TransformerDiffusionWithConditioningEncoder(in_channels=256, out_channels=512, model_channels=1024,
|
||||
contraction_dim=512, num_heads=8, num_layers=12, dropout=0,
|
||||
use_fp16=False, unconditioned_percentage=0).eval().cuda()
|
||||
model.load_state_dict(torch.load('x:/dlas/experiments/train_music_cheater_gen_v3/models/59000_generator_ema.pth'))
|
||||
|
||||
from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector
|
||||
spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000, 'true_normalization': True,
|
||||
'normalize': True, 'in': 'in', 'out': 'out'}, {}).cuda()
|
||||
ref_mel = spec_fn({'in': sample.unsqueeze(0)})['out']
|
||||
from trainer.injectors.audio_injectors import MusicCheaterLatentInjector
|
||||
cheater_encoder = MusicCheaterLatentInjector({'in': 'in', 'out': 'out'}, {}).cuda()
|
||||
ref_cheater = cheater_encoder({'in': ref_mel})['out']
|
||||
|
||||
from models.diffusion.respace import SpacedDiffusion
|
||||
from models.diffusion.respace import space_timesteps
|
||||
from models.diffusion.gaussian_diffusion import get_named_beta_schedule
|
||||
diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [128]), model_mean_type='epsilon',
|
||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
|
||||
conditioning_free=True, conditioning_free_k=1)
|
||||
|
||||
# Conventional decoding method:
|
||||
gen_cheater = diffuser.ddim_sample_loop(model, (1,256,length), progress=True, model_kwargs={'true_cheater': ref_cheater})
|
||||
|
||||
# Guidance decoding method:
|
||||
#mask = torch.ones_like(ref_cheater)
|
||||
#mask[:,:,15:-15] = 0
|
||||
#gen_cheater = diffuser.p_sample_loop_with_guidance(model, ref_cheater, mask, model_kwargs={'true_cheater': ref_cheater})
|
||||
|
||||
# Just decode the ref.
|
||||
#gen_cheater = ref_cheater
|
||||
|
||||
from models.audio.music.transformer_diffusion12 import TransformerDiffusionWithCheaterLatent
|
||||
diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon',
|
||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
|
||||
conditioning_free=True, conditioning_free_k=1)
|
||||
wrap = TransformerDiffusionWithCheaterLatent(in_channels=256, out_channels=512, model_channels=1024,
|
||||
contraction_dim=512, prenet_channels=1024, input_vec_dim=256,
|
||||
prenet_layers=6, num_heads=8, num_layers=16, new_code_expansion=True,
|
||||
dropout=0, unconditioned_percentage=0).eval().cuda()
|
||||
wrap.load_state_dict(torch.load('x:/dlas/experiments/train_music_diffusion_tfd_cheater_from_scratch/models/56500_generator_ema.pth'))
|
||||
cheater_to_mel = wrap.diff
|
||||
gen_mel = diffuser.ddim_sample_loop(cheater_to_mel, (1,256,gen_cheater.shape[-1]*16), progress=True,
|
||||
model_kwargs={'codes': gen_cheater.permute(0,2,1)})
|
||||
torchvision.utils.save_image((gen_mel + 1)/2, f'results/tfdpc_v3/{k}.png')
|
||||
|
||||
from utils.music_utils import get_mel2wav_v3_model
|
||||
m2w = get_mel2wav_v3_model().cuda()
|
||||
spectral_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon',
|
||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
|
||||
conditioning_free=True, conditioning_free_k=1)
|
||||
from trainer.injectors.audio_injectors import denormalize_mel
|
||||
gen_mel_denorm = denormalize_mel(gen_mel)
|
||||
output_shape = (1,16,gen_mel_denorm.shape[-1]*256//16)
|
||||
gen_wav = spectral_diffuser.ddim_sample_loop(m2w, output_shape, model_kwargs={'codes': gen_mel_denorm})
|
||||
from trainer.injectors.audio_injectors import pixel_shuffle_1d
|
||||
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
||||
|
||||
torchaudio.save(f'results/tfdpc_v3/{k}.wav', gen_wav.squeeze(1).cpu(), 22050)
|
||||
torchaudio.save(f'results/tfdpc_v3/{k}_ref.wav', sample.unsqueeze(0).cpu(), 22050)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_cheater_model()
|
||||
#test_cheater_model()
|
||||
inference_tfdpc3_with_cheater()
|
||||
|
|
Loading…
Reference in New Issue
Block a user