From 48aab2babeebd662d418e9e2007d354c526686a1 Mon Sep 17 00:00:00 2001
From: James Betker <jbetker@gmail.com>
Date: Tue, 24 May 2022 14:02:33 -0600
Subject: [PATCH] ressurect ctc code gen with some cool new ideas

---
 codes/models/audio/mel2vec.py                |   9 +-
 codes/models/audio/tts/ctc_code_generator.py | 121 +++++++++++++++++++
 codes/scripts/audio/gen/ctc_codes.py         |  63 ++++++++++
 codes/scripts/audio/gen/use_mel2vec_codes.py |  20 +--
 codes/train.py                               |   2 +-
 codes/trainer/eval/music_diffusion_fid.py    |   4 +-
 6 files changed, 208 insertions(+), 11 deletions(-)
 create mode 100644 codes/models/audio/tts/ctc_code_generator.py
 create mode 100644 codes/scripts/audio/gen/ctc_codes.py

diff --git a/codes/models/audio/mel2vec.py b/codes/models/audio/mel2vec.py
index 098fafc0..5972c8ac 100644
--- a/codes/models/audio/mel2vec.py
+++ b/codes/models/audio/mel2vec.py
@@ -542,7 +542,6 @@ class Wav2Vec2GumbelVectorQuantizer(nn.Module):
         idxs = codevector_idx.view(batch_size, sequence_length, self.num_groups)
         return idxs
 
-
     def forward(self, hidden_states, mask_time_indices=None):
         batch_size, sequence_length, hidden_size = hidden_states.shape
 
@@ -660,6 +659,14 @@ class ContrastiveTrainingWrapper(nn.Module):
         codes = self.quantizer.get_codes(proj)
         return codes
 
+    def reconstruct(self, mel):
+        proj = self.m2v.input_blocks(mel).permute(0,2,1)
+        _, proj = self.m2v.projector(proj)
+        quantized_features, codevector_perplexity = self.quantizer(proj)
+        quantized_features = self.project_q(quantized_features)
+        reconstruction = self.reconstruction_net(quantized_features.permute(0,2,1))
+        return reconstruction
+
     def forward(self, mel, inp_lengths=None):
         mel = mel[:, :, :-1]  # The MEL computation always pads with 1, throwing off optimal tensor math.
         features_shape = (mel.shape[0], mel.shape[-1]//self.m2v.dim_reduction_mult)
diff --git a/codes/models/audio/tts/ctc_code_generator.py b/codes/models/audio/tts/ctc_code_generator.py
new file mode 100644
index 00000000..68905115
--- /dev/null
+++ b/codes/models/audio/tts/ctc_code_generator.py
@@ -0,0 +1,121 @@
+from random import random
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from models.audio.tts.unet_diffusion_tts7 import CheckpointedLayer
+from models.lucidrains.x_transformers import Encoder
+from trainer.networks import register_model
+from utils.util import opt_get
+
+
+class CheckpointedXTransformerEncoder(nn.Module):
+    """
+    Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
+    to channels-last that XTransformer expects.
+    """
+    def __init__(self, **xtransformer_kwargs):
+        super().__init__()
+        self.transformer = XTransformer(**xtransformer_kwargs)
+
+        for xform in [self.transformer.encoder, self.transformer.decoder.net]:
+            for i in range(len(xform.attn_layers.layers)):
+                n, b, r = xform.attn_layers.layers[i]
+                xform.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
+
+    def forward(self, *args, **kwargs):
+        return self.transformer(*args, **kwargs)
+
+
+class CtcCodeGenerator(nn.Module):
+    def __init__(self, model_dim=512, layers=10, max_length=2048, dropout=.1, ctc_codes=256, max_pad=120, max_repeat=30):
+        super().__init__()
+        self.max_pad = max_pad
+        self.max_repeat = max_repeat
+        self.ctc_codes = ctc_codes
+        pred_codes = (max_pad+1)*(max_repeat+1)
+
+        self.position_embedding = nn.Embedding(max_length, model_dim)
+        self.codes_embedding = nn.Embedding(ctc_codes, model_dim)
+        self.recursive_embedding = nn.Embedding(pred_codes, model_dim)
+        self.mask_embedding = nn.Parameter(torch.randn(model_dim))
+        self.encoder = Encoder(
+                    dim=model_dim,
+                    depth=layers,
+                    heads=model_dim//64,
+                    ff_dropout=dropout,
+                    attn_dropout=dropout,
+                    use_rmsnorm=True,
+                    ff_glu=True,
+                    rotary_pos_emb=True,
+                )
+        self.pred_head = nn.Linear(model_dim, pred_codes)
+        self.confidence_head = nn.Linear(model_dim, 1)
+
+    def inference(self, codes, pads, repeats):
+        position_h = self.position_embedding(torch.arange(0, codes.shape[-1], device=codes.device))
+        codes_h = self.codes_embedding(codes)
+
+        labels = pads + repeats * self.max_pad
+        mask = labels == 0
+        recursive_h = self.recursive_embedding(labels)
+        recursive_h[mask] = self.mask_embedding
+
+        h = self.encoder(position_h + codes_h + recursive_h)
+        pred_logits = self.pred_head(h)
+        confidences = self.confidence_head(h).squeeze(-1)
+        confidences = F.softmax(confidences * mask, dim=-1)
+        return pred_logits, confidences
+
+    def forward(self, codes, pads, repeats, unpadded_lengths):
+        if unpadded_lengths is not None:
+            max_len = unpadded_lengths.max()
+            codes = codes[:, :max_len]
+            pads = pads[:, :max_len]
+            repeats = repeats[:, :max_len]
+
+        if pads.max() > self.max_pad:
+            print(f"Got unexpectedly long pads. Max: {pads.max()}, {pads}")
+            pads = torch.clip(pads, 0, self.max_pad)
+        if repeats.max() > self.max_repeat:
+            print(f"Got unexpectedly long repeats. Max: {repeats.max()}, {repeats}")
+            repeats = torch.clip(repeats, 0, self.max_repeat)
+        assert codes.max() < self.ctc_codes, codes.max()
+
+        labels = pads + repeats * self.max_pad
+
+        position_h = self.position_embedding(torch.arange(0, codes.shape[-1], device=codes.device))
+        codes_h = self.codes_embedding(codes)
+        recursive_h = self.recursive_embedding(labels)
+
+        mask_prob = random()
+        mask = torch.rand_like(labels.float()) > mask_prob
+        for b in range(codes.shape[0]):
+            mask[b, unpadded_lengths[b]:] = False
+        recursive_h[mask.logical_not()] = self.mask_embedding
+
+        h = self.encoder(position_h + codes_h + recursive_h)
+        pred_logits = self.pred_head(h)
+        loss = F.cross_entropy(pred_logits.permute(0,2,1), labels, reduce=False)
+
+        confidences = self.confidence_head(h).squeeze(-1)
+        confidences = F.softmax(confidences * mask, dim=-1)
+        confidence_loss = loss * confidences
+        loss = loss / loss.shape[-1]  # This balances the confidence_loss and loss.
+
+        return loss.mean(), confidence_loss.mean()
+
+
+@register_model
+def register_ctc_code_generator(opt_net, opt):
+    return CtcCodeGenerator(**opt_get(opt_net, ['kwargs'], {}))
+
+
+if __name__ == '__main__':
+    model = CtcCodeGenerator()
+    inps = torch.randint(0,36, (4, 300))
+    pads = torch.randint(0,100, (4,300))
+    repeats = torch.randint(0,20, (4,300))
+    loss = model(inps, pads, repeats)
+    print(loss.shape)
\ No newline at end of file
diff --git a/codes/scripts/audio/gen/ctc_codes.py b/codes/scripts/audio/gen/ctc_codes.py
new file mode 100644
index 00000000..3f0444cd
--- /dev/null
+++ b/codes/scripts/audio/gen/ctc_codes.py
@@ -0,0 +1,63 @@
+from itertools import groupby
+
+import torch
+from transformers import Wav2Vec2CTCTokenizer
+
+from models.audio.tts.ctc_code_generator import CtcCodeGenerator
+
+
+def get_ctc_metadata(codes):
+    if isinstance(codes, torch.Tensor):
+        codes = codes.tolist()
+    grouped = groupby(codes)
+    rcodes, repeats, pads = [], [], [0]
+    for val, group in grouped:
+        if val == 0:
+            pads[-1] = len(list(
+                group))  # This is a very important distinction! It means the padding belongs to the character proceeding it.
+        else:
+            rcodes.append(val)
+            repeats.append(len(list(group)))
+            pads.append(0)
+
+    rcodes = torch.tensor(rcodes)
+    # These clip values are sane maximum values which I did not see in the datasets I have access to.
+    repeats = torch.clip(torch.tensor(repeats), min=1, max=30)
+    pads = torch.clip(torch.tensor(pads[:-1]), max=120)
+
+    return rcodes, pads, repeats
+
+
+if __name__ == '__main__':
+    model = CtcCodeGenerator(model_dim=512, layers=16, dropout=0).eval().cuda()
+    model.load_state_dict(torch.load('../experiments/train_encoder_build_ctc_alignments_toy/models/76000_generator_ema.pth'))
+
+    tokenizer = Wav2Vec2CTCTokenizer.from_pretrained('jbetker/tacotron-symbols')
+    text = "and now, what do you want."
+    seq = [0, 0, 0, 38, 51, 51, 41, 11, 11, 51, 51, 0, 0, 0, 0, 52, 0, 60, 0, 0, 0, 0, 0, 0, 6, 11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 60, 45, 0, 38, 57, 57, 11, 0, 41, 52, 52, 11, 11, 62, 52, 52, 58, 0, 11, 11, 60, 0, 0, 0, 0, 38, 0, 0, 51, 51, 0, 0, 57, 0, 0, 7, 7, 0, 0, 0]
+    codes, pads, repeats = get_ctc_metadata(seq)
+
+    with torch.no_grad():
+        codes = codes.cuda().unsqueeze(0)
+        pads = pads.cuda().unsqueeze(0)
+        repeats = repeats.cuda().unsqueeze(0)
+
+        ppads = pads.clone()
+        prepeats = repeats.clone()
+        mask = torch.zeros_like(pads)
+        conf_str = tokenizer.decode(codes[0].tolist())
+        for s in range(codes.shape[-1]):
+            logits, confidences = model.inference(codes, pads * mask, repeats * mask)
+
+            confidences = confidences * mask.logical_not()  # prevent prediction of tokens that have already been predicted.
+            i = confidences.argmax(dim=-1)
+            pred = logits[0,i].argmax()
+
+            pred_pads = pred % model.max_pad
+            pred_repeats = pred // model.max_pad
+            ppads[0,i] = pred_pads
+            prepeats[0,i] = pred_repeats
+            mask[0,i] = 1
+
+            conf_str = conf_str[:i] + conf_str[i].upper() + conf_str[i+1:]
+            print(f"conf: {conf_str} pads={pred_pads}:{pads[0,i].item()} repeats={pred_repeats}:{repeats[0,i].item()}")
\ No newline at end of file
diff --git a/codes/scripts/audio/gen/use_mel2vec_codes.py b/codes/scripts/audio/gen/use_mel2vec_codes.py
index 74b8a783..f2d576de 100644
--- a/codes/scripts/audio/gen/use_mel2vec_codes.py
+++ b/codes/scripts/audio/gen/use_mel2vec_codes.py
@@ -1,7 +1,8 @@
 import torch
+import torchvision
 
 from models.audio.mel2vec import ContrastiveTrainingWrapper
-from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector
+from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector, normalize_mel
 from utils.util import load_audio
 
 def collapse_codegroups(codes):
@@ -24,17 +25,22 @@ def recover_codegroups(codes, groups):
 
 if __name__ == '__main__':
     model = ContrastiveTrainingWrapper(mel_input_channels=256, inner_dim=1024, layers=24, dropout=0, mask_time_prob=0,
-                                       mask_time_length=6, num_negatives=100, codebook_size=8, codebook_groups=8, disable_custom_linear_init=True)
-    model.load_state_dict(torch.load("../experiments/m2v_music.pth"))
+                                       mask_time_length=6, num_negatives=100, codebook_size=16, codebook_groups=4,
+                                       disable_custom_linear_init=True, feature_producer_type='standard',
+                                       freq_mask_percent=0, do_reconstruction_loss=True)
+    model.load_state_dict(torch.load("../experiments/m2v_music2.pth"))
     model.eval()
 
     wav = load_audio("Y:/separated/bt-music-1/100 Hits - Running Songs 2014 CD 2/100 Hits - Running Songs 2014 Cd2 - 02 - 7Th Heaven - Ain't Nothin' Goin' On But The Rent/00001/no_vocals.wav", 22050)
-    mel = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 22000, 'normalize': True, 'in': 'in', 'out': 'out'}, {})({'in': wav.unsqueeze(0)})['out']
-
+    mel = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000,
+                                       'normalize': True, 'in': 'in', 'out': 'out'}, {})({'in': wav.unsqueeze(0)})['out']
     codes = model.get_codes(mel)
-    codes2 = model.get_codes(mel)
+    reconstruction = model.reconstruct(mel)
+
+    torchvision.utils.save_image((normalize_mel(mel).unsqueeze(1)+1)/2, 'mel.png')
+    torchvision.utils.save_image((normalize_mel(reconstruction).unsqueeze(1)+1)/2, 'reconstructed.png')
 
     collapsed = collapse_codegroups(codes)
-    recovered = recover_codegroups(collapsed, 8)
+    recovered = recover_codegroups(collapsed, 4)
 
     print(codes)
\ No newline at end of file
diff --git a/codes/train.py b/codes/train.py
index 186b5fe9..7f9e11a2 100644
--- a/codes/train.py
+++ b/codes/train.py
@@ -332,7 +332,7 @@ class Trainer:
 
 if __name__ == '__main__':
     parser = argparse.ArgumentParser()
-    parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_diffusion_flat.yml')
+    parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_encoder_build_ctc_alignments.yml')
     parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
     args = parser.parse_args()
     opt = option.parse(args.opt, is_train=True)
diff --git a/codes/trainer/eval/music_diffusion_fid.py b/codes/trainer/eval/music_diffusion_fid.py
index f17afdf4..a6cf584f 100644
--- a/codes/trainer/eval/music_diffusion_fid.py
+++ b/codes/trainer/eval/music_diffusion_fid.py
@@ -69,7 +69,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
             self.diffusion_fn = self.perform_diffusion_from_codes
             self.local_modules['codegen'] = get_music_codegen()
         self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000,
-                                                    'normalize': True, 'do_normalization': True, 'in': 'in', 'out': 'out'}, {})
+                                                    'normalize': True, 'in': 'in', 'out': 'out'}, {})
 
     def load_data(self, path):
         return list(glob(f'{path}/*.wav'))
@@ -86,7 +86,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
                                           model_kwargs={'aligned_conditioning': mel})
         gen = pixel_shuffle_1d(gen, 16)
 
-        return gen, real_resampled, self.spec_fn({'in': gen})['out'], mel, sample_rate
+        return gen, real_resampled, normalize_mel(self.spec_fn({'in': gen})['out']), normalize_mel(mel), sample_rate
 
     def gen_freq_gap(self, mel, band_range=(60,100)):
         gap_start, gap_end = band_range