forked from mrq/DL-Art-School
m2v
This commit is contained in:
parent
d1de94d75c
commit
519151d83f
|
@ -98,7 +98,8 @@ class UnsupervisedAudioDataset(torch.utils.data.Dataset):
|
||||||
for exc in opt['exclusions']:
|
for exc in opt['exclusions']:
|
||||||
with open(exc, 'r') as f:
|
with open(exc, 'r') as f:
|
||||||
exclusions.extend(f.read().splitlines())
|
exclusions.extend(f.read().splitlines())
|
||||||
self.audiopaths = load_paths_from_cache(path, cache_path, exclusions)
|
ew = opt_get(opt, ['endswith'])
|
||||||
|
self.audiopaths = load_paths_from_cache(path, cache_path, exclusions, ew)
|
||||||
|
|
||||||
# Parse options
|
# Parse options
|
||||||
self.sampling_rate = opt_get(opt, ['sampling_rate'], 22050)
|
self.sampling_rate = opt_get(opt, ['sampling_rate'], 22050)
|
||||||
|
|
|
@ -578,7 +578,7 @@ def imresize_np(img, scale, antialiasing=True):
|
||||||
return out_2.numpy()
|
return out_2.numpy()
|
||||||
|
|
||||||
|
|
||||||
def load_paths_from_cache(paths, cache_path, exclusion_list=[]):
|
def load_paths_from_cache(paths, cache_path, exclusion_list=[], endswith=None):
|
||||||
if not isinstance(paths, list):
|
if not isinstance(paths, list):
|
||||||
paths = [paths]
|
paths = [paths]
|
||||||
if os.path.exists(cache_path):
|
if os.path.exists(cache_path):
|
||||||
|
@ -595,6 +595,10 @@ def load_paths_from_cache(paths, cache_path, exclusion_list=[]):
|
||||||
exclusion_set = set(exclusion_list)
|
exclusion_set = set(exclusion_list)
|
||||||
output = list(master_set - exclusion_set)
|
output = list(master_set - exclusion_set)
|
||||||
print(f"Excluded {before-len(output)} files.")
|
print(f"Excluded {before-len(output)} files.")
|
||||||
|
if endswith is not None:
|
||||||
|
before = len(output)
|
||||||
|
output = list(filter(lambda p: not p.endswith(endswith), output))
|
||||||
|
print(f"Excluded {before-len(output)} files with endswith mask. For total of {len(output)} files")
|
||||||
print("Done.")
|
print("Done.")
|
||||||
torch.save(output, cache_path)
|
torch.save(output, cache_path)
|
||||||
return output
|
return output
|
||||||
|
|
|
@ -1,3 +1,5 @@
|
||||||
|
import copy
|
||||||
|
import functools
|
||||||
import math
|
import math
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
@ -5,8 +7,12 @@ import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices, _sample_negative_indices
|
||||||
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
||||||
|
|
||||||
|
from trainer.networks import register_model
|
||||||
|
from utils.util import checkpoint
|
||||||
|
|
||||||
|
|
||||||
class Mel2Vec2FeatureProjection(nn.Module):
|
class Mel2Vec2FeatureProjection(nn.Module):
|
||||||
def __init__(self, inner_dim, dropout):
|
def __init__(self, inner_dim, dropout):
|
||||||
|
@ -234,6 +240,29 @@ class Wav2Vec2SamePadLayer(nn.Module):
|
||||||
return hidden_states
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
from torch.nn.utils.weight_norm import WeightNorm
|
||||||
|
def __deepcopy__(self, memo):
|
||||||
|
# save and delete all weightnorm weights on self
|
||||||
|
weights = {}
|
||||||
|
for hook in self._forward_pre_hooks.values():
|
||||||
|
if isinstance(hook, WeightNorm):
|
||||||
|
weights[hook.name] = getattr(self, hook.name)
|
||||||
|
delattr(self, hook.name)
|
||||||
|
# remove this deepcopy method, restoring the object's original one if necessary
|
||||||
|
__deepcopy__ = self.__deepcopy__
|
||||||
|
if self.orig_deepcopy:
|
||||||
|
self.__deepcopy__ = self.orig_deepcopy
|
||||||
|
else:
|
||||||
|
del self.__deepcopy__
|
||||||
|
# actually do the copy
|
||||||
|
result = copy.deepcopy(self)
|
||||||
|
# restore weights and method on self
|
||||||
|
for name, value in weights.items():
|
||||||
|
setattr(self, name, value)
|
||||||
|
self.__deepcopy__ = __deepcopy__
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
class Wav2Vec2PositionalConvEmbedding(nn.Module):
|
class Wav2Vec2PositionalConvEmbedding(nn.Module):
|
||||||
def __init__(self, hidden_size, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16):
|
def __init__(self, hidden_size, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
@ -244,6 +273,9 @@ class Wav2Vec2PositionalConvEmbedding(nn.Module):
|
||||||
padding=num_conv_pos_embeddings // 2,
|
padding=num_conv_pos_embeddings // 2,
|
||||||
groups=num_conv_pos_embedding_groups,
|
groups=num_conv_pos_embedding_groups,
|
||||||
)
|
)
|
||||||
|
# Fix weightnorm deepcopy; see: https://github.com/pytorch/pytorch/issues/28594
|
||||||
|
self.conv.orig_deepcopy = getattr(Wav2Vec2PositionalConvEmbedding, '__deepcopy__', None)
|
||||||
|
self.conv.__deepcopy__ = __deepcopy__.__get__(self.conv, self.conv.__class__)
|
||||||
|
|
||||||
if is_deepspeed_zero3_enabled():
|
if is_deepspeed_zero3_enabled():
|
||||||
import deepspeed
|
import deepspeed
|
||||||
|
@ -276,7 +308,6 @@ class Wav2Vec2Encoder(nn.Module):
|
||||||
self.layer_norm = nn.LayerNorm(hidden_size, eps=1e-5)
|
self.layer_norm = nn.LayerNorm(hidden_size, eps=1e-5)
|
||||||
self.dropout = nn.Dropout(dropout)
|
self.dropout = nn.Dropout(dropout)
|
||||||
self.layers = nn.ModuleList([Wav2Vec2EncoderLayer(hidden_size, dropout) for _ in range(num_layers)])
|
self.layers = nn.ModuleList([Wav2Vec2EncoderLayer(hidden_size, dropout) for _ in range(num_layers)])
|
||||||
self.gradient_checkpointing = False
|
|
||||||
self.layerdrop = layerdrop
|
self.layerdrop = layerdrop
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
|
@ -314,24 +345,8 @@ class Wav2Vec2Encoder(nn.Module):
|
||||||
|
|
||||||
skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
|
skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
|
||||||
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
||||||
# under deepspeed zero3 all gpus must run in sync
|
layer_fn = functools.partial(layer, attention_mask=attention_mask)
|
||||||
if self.gradient_checkpointing and self.training:
|
layer_outputs = checkpoint(layer_fn, hidden_states)
|
||||||
# create gradient checkpointing function
|
|
||||||
def create_custom_forward(module):
|
|
||||||
def custom_forward(*inputs):
|
|
||||||
return module(*inputs, output_attentions)
|
|
||||||
|
|
||||||
return custom_forward
|
|
||||||
|
|
||||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
||||||
create_custom_forward(layer),
|
|
||||||
hidden_states,
|
|
||||||
attention_mask,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
layer_outputs = layer(
|
|
||||||
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
|
||||||
)
|
|
||||||
hidden_states = layer_outputs[0]
|
hidden_states = layer_outputs[0]
|
||||||
|
|
||||||
return hidden_states
|
return hidden_states
|
||||||
|
@ -345,17 +360,21 @@ class Mel2Vec(nn.Module):
|
||||||
dropout=.1,
|
dropout=.1,
|
||||||
layerdrop=0,
|
layerdrop=0,
|
||||||
mask_time_prob=.65,
|
mask_time_prob=.65,
|
||||||
mask_time_length=10):
|
mask_time_length=10,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
self.input_blocks = nn.Sequential(nn.Conv1d(mel_input_channels, inner_dim//2, kernel_size=5, padding=2, stride=2),
|
self.input_blocks = nn.Sequential(nn.Conv1d(mel_input_channels, inner_dim//2, kernel_size=5, padding=2, stride=2),
|
||||||
nn.GroupNorm(num_groups=8, num_channels=inner_dim, affine=True),
|
nn.GroupNorm(num_groups=8, num_channels=inner_dim//2, affine=True),
|
||||||
nn.SiLU(),
|
nn.SiLU(),
|
||||||
nn.Conv1d(inner_dim//2, inner_dim, kernel_size=3, padding=1, stride=2),
|
nn.Conv1d(inner_dim//2, inner_dim, kernel_size=3, padding=1, stride=2),
|
||||||
nn.GroupNorm(num_groups=8, num_channels=inner_dim, affine=True),
|
nn.GroupNorm(num_groups=8, num_channels=inner_dim, affine=True),
|
||||||
nn.SiLU(),
|
nn.SiLU(),
|
||||||
)
|
)
|
||||||
self.projector = Wav2Vec2FeatureProjection(inner_dim, dropout)
|
self.projector = Mel2Vec2FeatureProjection(inner_dim, dropout)
|
||||||
self.masked_spec_embed = nn.Parameter(torch.rand(inner_dim,))
|
self.masked_spec_embed = nn.Parameter(torch.rand(inner_dim,))
|
||||||
self.encoder = Wav2Vec2Encoder(inner_dim, dropout, layers, layerdrop)
|
self.encoder = Wav2Vec2Encoder(inner_dim, dropout, layers, layerdrop)
|
||||||
|
self.mask_time_prob = mask_time_prob
|
||||||
|
self.mask_time_length = mask_time_length
|
||||||
self.apply(self.init)
|
self.apply(self.init)
|
||||||
|
|
||||||
def init(self, module):
|
def init(self, module):
|
||||||
|
@ -368,12 +387,12 @@ class Mel2Vec(nn.Module):
|
||||||
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
|
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
|
||||||
)
|
)
|
||||||
nn.init.constant_(module.conv.bias, 0)
|
nn.init.constant_(module.conv.bias, 0)
|
||||||
elif isinstance(module, Wav2Vec2FeatureProjection):
|
elif isinstance(module, Mel2Vec2FeatureProjection):
|
||||||
k = math.sqrt(1 / module.projection.in_features)
|
k = math.sqrt(1 / module.projection.in_features)
|
||||||
nn.init.uniform_(module.projection.weight, a=-k, b=k)
|
nn.init.uniform_(module.projection.weight, a=-k, b=k)
|
||||||
nn.init.uniform_(module.projection.bias, a=-k, b=k)
|
nn.init.uniform_(module.projection.bias, a=-k, b=k)
|
||||||
elif isinstance(module, nn.Linear):
|
elif isinstance(module, nn.Linear):
|
||||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
module.weight.data.normal_(mean=0.0, std=.02)
|
||||||
if module.bias is not None:
|
if module.bias is not None:
|
||||||
module.bias.data.zero_()
|
module.bias.data.zero_()
|
||||||
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
||||||
|
@ -396,48 +415,35 @@ class Mel2Vec(nn.Module):
|
||||||
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# `config.apply_spec_augment` can set masking to False
|
|
||||||
if not getattr(self.config, "apply_spec_augment", True):
|
|
||||||
return hidden_states
|
|
||||||
|
|
||||||
# generate indices & apply SpecAugment along time axis
|
# generate indices & apply SpecAugment along time axis
|
||||||
batch_size, sequence_length, hidden_size = hidden_states.size()
|
batch_size, sequence_length, hidden_size = hidden_states.size()
|
||||||
|
|
||||||
if mask_time_indices is not None:
|
if mask_time_indices is not None:
|
||||||
# apply SpecAugment along time axis with given mask_time_indices
|
# apply SpecAugment along time axis with given mask_time_indices
|
||||||
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
||||||
elif self.config.mask_time_prob > 0 and self.training:
|
elif self.mask_time_prob > 0 and self.training:
|
||||||
mask_time_indices = _compute_mask_indices(
|
mask_time_indices = _compute_mask_indices(
|
||||||
(batch_size, sequence_length),
|
(batch_size, sequence_length),
|
||||||
mask_prob=self.config.mask_time_prob,
|
mask_prob=self.mask_time_prob,
|
||||||
mask_length=self.config.mask_time_length,
|
mask_length=self.mask_time_length,
|
||||||
attention_mask=attention_mask,
|
attention_mask=attention_mask,
|
||||||
min_masks=self.config.mask_time_min_masks,
|
min_masks=self.mask_time_min_masks,
|
||||||
)
|
)
|
||||||
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
|
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
|
||||||
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
||||||
|
|
||||||
if self.config.mask_feature_prob > 0 and self.training:
|
|
||||||
# generate indices & apply SpecAugment along feature axis
|
|
||||||
mask_feature_indices = _compute_mask_indices(
|
|
||||||
(batch_size, hidden_size),
|
|
||||||
mask_prob=self.config.mask_feature_prob,
|
|
||||||
mask_length=self.config.mask_feature_length,
|
|
||||||
min_masks=self.config.mask_feature_min_masks,
|
|
||||||
)
|
|
||||||
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
|
|
||||||
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
|
|
||||||
hidden_states[mask_feature_indices] = 0
|
|
||||||
|
|
||||||
return hidden_states
|
return hidden_states
|
||||||
|
|
||||||
def forward(self, mel):
|
def forward(self, mel, mask_time_indices=None, return_projections=False):
|
||||||
proj = self.input_blocks(mel).permute(0,2,1)
|
proj = self.input_blocks(mel).permute(0,2,1)
|
||||||
proj, _ = self.projector(proj)
|
proj, _ = self.projector(proj)
|
||||||
|
|
||||||
# Mask projections
|
# Mask projections
|
||||||
h = self.apply_masking(proj, mask_time_indices)
|
h = self.apply_masking(proj, mask_time_indices)
|
||||||
h = self.encoder(h)
|
h = self.encoder(h)
|
||||||
|
|
||||||
|
if return_projections:
|
||||||
|
return h, proj
|
||||||
return h
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
@ -452,11 +458,12 @@ class Wav2Vec2GumbelVectorQuantizer(nn.Module):
|
||||||
self.codevector_dim = codevector_dim
|
self.codevector_dim = codevector_dim
|
||||||
self.num_groups = num_codevector_groups
|
self.num_groups = num_codevector_groups
|
||||||
self.num_vars = num_codevectors_per_group
|
self.num_vars = num_codevectors_per_group
|
||||||
|
self.num_codevectors = num_codevector_groups * num_codevectors_per_group
|
||||||
|
|
||||||
if codevector_dim % self.num_groups != 0:
|
if codevector_dim % self.num_groups != 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"`config.codevector_dim {config.codevector_dim} must be divisible "
|
f"`codevector_dim {codevector_dim} must be divisible "
|
||||||
f"by `config.num_codevector_groups` {self.num_groups} for concatenation"
|
f"by `num_codevector_groups` {num_codevector_groups} for concatenation"
|
||||||
)
|
)
|
||||||
|
|
||||||
# storage for codebook variables (codewords)
|
# storage for codebook variables (codewords)
|
||||||
|
@ -527,16 +534,112 @@ class Wav2Vec2GumbelVectorQuantizer(nn.Module):
|
||||||
|
|
||||||
|
|
||||||
class ContrastiveTrainingWrapper(nn.Module):
|
class ContrastiveTrainingWrapper(nn.Module):
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, inner_dim=1024, dropout=.1, mask_time_prob=.65, mask_time_length=4, num_negatives=100, **kwargs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.m2v = Mel2Vec(**kwargs)
|
self.m2v = Mel2Vec(inner_dim=inner_dim, dropout=dropout, mask_time_prob=mask_time_prob,
|
||||||
self.dropout_features = nn.Dropout(kwargs['dropout'])
|
mask_time_length=mask_time_length, **kwargs)
|
||||||
|
self.dropout_features = nn.Dropout(dropout)
|
||||||
|
self.num_negatives = num_negatives
|
||||||
|
self.mask_time_prob = mask_time_prob
|
||||||
|
self.mask_time_length = mask_time_length
|
||||||
|
|
||||||
self.quantizer = Wav2Vec2GumbelVectorQuantizer(kwargs['inner_dim'])
|
self.quantizer = Wav2Vec2GumbelVectorQuantizer(inner_dim)
|
||||||
|
|
||||||
# make sure that project_hid & project_q are initialized like normal linear layers
|
# make sure that project_hid & project_q are initialized like normal linear layers
|
||||||
self.project_hid = nn.Linear(kwargs['inner_dim'], self.quantizer.codevector_dim)
|
self.project_hid = nn.Linear(inner_dim, self.quantizer.codevector_dim)
|
||||||
self.project_q = nn.Linear(self.quantizer.codevector_dim, self.quantizer.codevector_dim)
|
self.project_q = nn.Linear(self.quantizer.codevector_dim, self.quantizer.codevector_dim)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def compute_contrastive_logits(
|
||||||
|
target_features: torch.FloatTensor,
|
||||||
|
negative_features: torch.FloatTensor,
|
||||||
|
predicted_features: torch.FloatTensor,
|
||||||
|
temperature: int = 0.1,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Compute logits for contrastive loss based using cosine similarity as the distance measure between
|
||||||
|
`[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied.
|
||||||
|
"""
|
||||||
|
target_features = torch.cat([target_features, negative_features], dim=0)
|
||||||
|
|
||||||
|
logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as(
|
||||||
|
target_features
|
||||||
|
)
|
||||||
|
|
||||||
|
# apply temperature
|
||||||
|
logits = logits / temperature
|
||||||
|
return logits
|
||||||
|
|
||||||
def forward(self, mel):
|
def forward(self, mel):
|
||||||
pass
|
features_shape = (mel.shape[0], mel.shape[-1]//4)
|
||||||
|
mask_time_indices = _compute_mask_indices(features_shape, self.mask_time_prob, self.mask_time_length)
|
||||||
|
sampled_negative_indices = torch.tensor(_sample_negative_indices(features_shape, self.num_negatives, mask_time_indices=mask_time_indices), device=mel.device)
|
||||||
|
mask_time_indices = torch.tensor(mask_time_indices, device=mel.device)
|
||||||
|
|
||||||
|
outputs, proj = self.m2v(mel, mask_time_indices, return_projections=True)
|
||||||
|
|
||||||
|
# 1. project all transformed features (including masked) to final vq dim
|
||||||
|
transformer_features = self.project_hid(outputs)
|
||||||
|
|
||||||
|
# 2. quantize all (unmasked) extracted features and project to final vq dim
|
||||||
|
extract_features = self.dropout_features(proj)
|
||||||
|
|
||||||
|
quantized_features, codevector_perplexity = self.quantizer(
|
||||||
|
extract_features, mask_time_indices=mask_time_indices
|
||||||
|
)
|
||||||
|
quantized_features = self.project_q(quantized_features)
|
||||||
|
batch_size, sequence_length, hidden_size = quantized_features.shape
|
||||||
|
|
||||||
|
# 3. sample K negatives (distractors) quantized states for contrastive loss
|
||||||
|
# if attention_mask is passed, make sure that padded feature vectors cannot be sampled
|
||||||
|
# sample negative quantized vectors BTC => (BxT)C
|
||||||
|
negative_quantized_features = quantized_features.view(-1, hidden_size)[
|
||||||
|
sampled_negative_indices.long().view(-1)
|
||||||
|
]
|
||||||
|
negative_quantized_features = negative_quantized_features.view(
|
||||||
|
batch_size, sequence_length, -1, hidden_size
|
||||||
|
).permute(2, 0, 1, 3)
|
||||||
|
|
||||||
|
# 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa`
|
||||||
|
# of equation (3) in https://arxiv.org/pdf/2006.11477.pdf
|
||||||
|
logits = self.compute_contrastive_logits(
|
||||||
|
quantized_features[None, :],
|
||||||
|
negative_quantized_features,
|
||||||
|
transformer_features,
|
||||||
|
.1,
|
||||||
|
)
|
||||||
|
|
||||||
|
# 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low),
|
||||||
|
# its cosine similarity will be masked
|
||||||
|
neg_is_pos = (quantized_features == negative_quantized_features).all(-1)
|
||||||
|
|
||||||
|
if neg_is_pos.any():
|
||||||
|
logits[1:][neg_is_pos] = float("-inf")
|
||||||
|
|
||||||
|
# 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) =
|
||||||
|
# -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa))
|
||||||
|
logits = logits.transpose(0, 2).reshape(-1, logits.size(0))
|
||||||
|
target = ((1 - mask_time_indices.long()) * -100).transpose(0, 1).flatten()
|
||||||
|
|
||||||
|
contrastive_loss = nn.functional.cross_entropy(logits.float(), target, reduction="sum")
|
||||||
|
# 7. compute diversity loss: \mathbf{L}_d
|
||||||
|
num_codevectors = self.quantizer.num_codevectors
|
||||||
|
diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum()
|
||||||
|
|
||||||
|
return contrastive_loss, diversity_loss
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def register_mel2vec_pretraining(opt_net, opt):
|
||||||
|
return ContrastiveTrainingWrapper(**opt_net['kwargs'])
|
||||||
|
|
||||||
|
|
||||||
|
@register_model
|
||||||
|
def register_mel2vec(opt_net, opt):
|
||||||
|
return Mel2Vec(**opt_net['kwargs'])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
model = ContrastiveTrainingWrapper()
|
||||||
|
mel = torch.randn((2,256,400))
|
||||||
|
print(model(mel))
|
|
@ -327,7 +327,7 @@ class Trainer:
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_waveform_gen3.yml')
|
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_mel2vec.yml')
|
||||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
opt = option.parse(args.opt, is_train=True)
|
opt = option.parse(args.opt, is_train=True)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user