diff --git a/codes/models/archs/discriminator_vgg_arch.py b/codes/models/archs/discriminator_vgg_arch.py index 9c1d12d7..eadcf559 100644 --- a/codes/models/archs/discriminator_vgg_arch.py +++ b/codes/models/archs/discriminator_vgg_arch.py @@ -5,7 +5,6 @@ from models.archs.RRDBNet_arch import RRDB, RRDBWithBypass from models.archs.arch_util import ConvBnLelu, ConvGnLelu, ExpansionBlock, ConvGnSilu, ResidualBlockGN import torch.nn.functional as F from models.archs.SwitchedResidualGenerator_arch import gather_2d -from models.archs.pyramid_arch import Pyramid from utils.util import checkpoint @@ -660,29 +659,3 @@ class SingleImageQualityEstimator(nn.Module): fea = self.lrelu(self.conv4_2(fea)) fea = self.sigmoid(self.conv4_3(fea)) return fea - - -class PyramidDiscriminator(nn.Module): - def __init__(self, in_nc, nf, block=ConvGnLelu): - super(PyramidDiscriminator, self).__init__() - self.initial_conv = block(in_nc, nf, kernel_size=3, stride=2, bias=True, norm=False, activation=True) - self.top_proc = nn.Sequential(*[ResidualBlockGN(nf), - ResidualBlockGN(nf), - ResidualBlockGN(nf)]) - self.pyramid = Pyramid(nf, depth=3, processing_convs_per_layer=2, processing_at_point=2, - scale_per_level=1.5, norm=True, return_outlevels=False) - self.bottom_proc = nn.Sequential(*[ResidualBlockGN(nf), - ResidualBlockGN(nf), - ResidualBlockGN(nf), - ResidualBlockGN(nf), - ConvGnLelu(nf, nf // 2, kernel_size=1, activation=True, norm=False, bias=True), - ConvGnLelu(nf // 2, nf // 4, kernel_size=1, activation=True, norm=False, bias=True), - ConvGnLelu(nf // 4, 1, kernel_size=1, activation=False, norm=False, bias=True)]) - - def forward(self, x): - fea = self.initial_conv(x) - fea = checkpoint(self.top_proc, fea) - fea = checkpoint(self.pyramid, fea) - fea = checkpoint(self.bottom_proc, fea) - return torch.mean(fea, dim=[1,2,3]) - diff --git a/codes/models/networks.py b/codes/models/networks.py index c49b40e2..fb1a0149 100644 --- a/codes/models/networks.py +++ b/codes/models/networks.py @@ -21,7 +21,6 @@ import models.archs.rcan as rcan from models.archs import srg2_classic from models.archs.biggan.biggan_discriminator import BigGanDiscriminator from models.archs.stylegan.Discriminator_StyleGAN import StyleGanDiscriminator -from models.archs.pyramid_arch import BasicResamplingFlowNet from models.archs.rrdb_with_adain_latent import AdaRRDBNet, LinearLatentEstimator from models.archs.rrdb_with_latent import LatentEstimator, RRDBNetWithLatent, LatentEstimator2 from models.archs.teco_resgen import TecoGen @@ -198,8 +197,6 @@ def define_D_net(opt_net, img_sz=None, wrap=False): netD = SRGAN_arch.RefDiscriminatorVgg128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128) elif which_model == "psnr_approximator": netD = SRGAN_arch.PsnrApproximator(nf=opt_net['nf'], input_img_factor=img_sz / 128) - elif which_model == "pyramid_disc": - netD = SRGAN_arch.PyramidDiscriminator(in_nc=3, nf=opt_net['nf']) elif which_model == "stylegan2_discriminator": attn = opt_net['attn_layers'] if 'attn_layers' in opt_net.keys() else [] disc = stylegan2.StyleGan2Discriminator(image_size=opt_net['image_size'], input_filters=opt_net['in_nc'], attn_layers=attn)