Finish up the text->voice clip model

This commit is contained in:
James Betker 2022-01-07 22:28:45 -07:00
parent 65ffe38fce
commit 68090ac3e9

View File

@ -32,14 +32,16 @@ class VoiceCLIP(nn.Module):
dim_text=512,
dim_speech=512,
dim_latent=512,
num_text_tokens=10000,
num_text_tokens=256,
text_enc_depth=6,
text_seq_len=200,
text_seq_len=120,
text_heads=8,
num_speech_tokens=8192,
speech_enc_depth=6,
speech_heads=8,
speech_seq_len=250,
text_mask_percentage: 0,
wav_token_compression = 1024,
):
super().__init__()
self.text_emb = nn.Embedding(num_text_tokens, dim_text)
@ -55,15 +57,27 @@ class VoiceCLIP(nn.Module):
self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)
self.temperature = nn.Parameter(torch.tensor(1.))
self.text_mask_percentage = text_mask_percentage
self.wav_token_compression = wav_token_compression
def forward(
self,
text,
text_lengths,
speech_tokens,
text_mask=None,
wav_lengths,
return_loss=False
):
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
# chopping the inputs by the maximum actual length.
max_text_len = text_lengths.max()
text = text[:, :max_text_len]
max_mel_len = wav_lengths.max() // self.wav_token_compression
speech_tokens = speech_tokens[:, :max_mel_len]
b, device = text.shape[0], text.device
if self.text_mask_percentage > 0:
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
text_emb = self.text_emb(text)
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
@ -74,7 +88,7 @@ class VoiceCLIP(nn.Module):
enc_text = self.text_transformer(text_emb, mask=text_mask)
enc_speech = self.speech_transformer(speech_emb)
if exists(text_mask):
if self.text_mask_percentage > 0:
text_latents = masked_mean(enc_text, text_mask, dim=1)
else:
text_latents = enc_text.mean(dim=1)
@ -104,7 +118,7 @@ def register_voice_clip(opt_net, opt):
if __name__ == '__main__':
clip = VoiceCLIP()
clip(torch.randint(0,1000,(2,200)),
clip = VoiceCLIP(text_mask_percentage=.2)
clip(torch.randint(0,256,(2,120)),
torch.randint(0,8192,(2,250)),
return_loss=True)