forked from mrq/DL-Art-School
SSGSimpler network
This commit is contained in:
parent
1ba01d69b5
commit
6f8705e8cb
|
@ -1,17 +1,16 @@
|
|||
import math
|
||||
import functools
|
||||
from models.archs.arch_util import MultiConvBlock, ConvGnLelu, ConvGnSilu, ReferenceJoinBlock
|
||||
from models.archs.SwitchedResidualGenerator_arch import ConfigurableSwitchComputer, gather_2d, SwitchModelBase
|
||||
from models.archs.SPSR_arch import ImageGradientNoPadding
|
||||
from torch import nn
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from switched_conv.switched_conv_util import save_attention_to_image_rgb
|
||||
from switched_conv.switched_conv import compute_attention_specificity
|
||||
import os
|
||||
import torchvision
|
||||
from torch import nn
|
||||
|
||||
from models.archs.SPSR_arch import ImageGradientNoPadding
|
||||
from models.archs.SwitchedResidualGenerator_arch import ConfigurableSwitchComputer, gather_2d, SwitchModelBase
|
||||
from models.archs.arch_util import MultiConvBlock, ConvGnLelu, ConvGnSilu, ReferenceJoinBlock
|
||||
from utils.util import checkpoint
|
||||
|
||||
|
||||
# VGG-style layer with Conv(stride2)->BN->Activation->Conv->BN->Activation
|
||||
# Doubles the input filter count.
|
||||
class HalvingProcessingBlock(nn.Module):
|
||||
|
@ -446,3 +445,132 @@ class StackedSwitchGenerator2xTeco(SwitchModelBase):
|
|||
self.attentions = [a1, a3, a3, a4, a5]
|
||||
return x_out,
|
||||
|
||||
|
||||
class SimplePyramidMultiplexer(nn.Module):
|
||||
def __init__(self, nf, transforms):
|
||||
super(SimplePyramidMultiplexer, self).__init__()
|
||||
|
||||
# Blocks used to create the query
|
||||
reductions = 3
|
||||
self.input_process = ConvGnSilu(nf, nf, activation=True, norm=False, bias=True)
|
||||
self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(int(nf * 1.5 ** i), factor=1.5)
|
||||
for i in range(reductions)])
|
||||
reduction_filters = int(nf * 1.5 ** reductions)
|
||||
self.processing_blocks = nn.Sequential(
|
||||
ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False),
|
||||
ConvGnSilu(reduction_filters, reduction_filters, kernel_size=3, activation=True, norm=True, bias=False))
|
||||
self.expansion_blocks = nn.ModuleList([ExpansionBlock2(int(reduction_filters // (1.5 ** i)), factor=1.5)
|
||||
for i in range(reductions)])
|
||||
|
||||
self.cbl1 = ConvGnSilu(nf, nf // 2, kernel_size=1, norm=False, bias=False)
|
||||
self.cbl2 = ConvGnSilu(nf // 2, transforms, kernel_size=1, norm=False, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
q = self.input_process(x)
|
||||
reduction_identities = []
|
||||
for b in self.reduction_blocks:
|
||||
reduction_identities.append(q)
|
||||
q = b(q)
|
||||
q = self.processing_blocks(q)
|
||||
for i, b in enumerate(self.expansion_blocks):
|
||||
q = b(q, reduction_identities[-i - 1])
|
||||
q = self.cbl1(q)
|
||||
q = self.cbl2(q)
|
||||
return q
|
||||
|
||||
|
||||
class SimplerSwitchWithReference(nn.Module):
|
||||
def __init__(self, nf, num_transforms, init_temperature=10, has_ref=True):
|
||||
super(SimplerSwitchWithReference, self).__init__()
|
||||
self.nf = nf
|
||||
self.transformation_counts = num_transforms
|
||||
multiplx_fn = functools.partial(SimplePyramidMultiplexer, nf)
|
||||
pretransform = functools.partial(ConvGnLelu, nf, int(nf*1.5), kernel_size=3, bias=False, norm=False, activation=True, weight_init_factor=.1)
|
||||
transform_fn = functools.partial(ConvGnLelu, int(nf * 1.5), int(nf * 1.5), kernel_size=3, bias=False, norm=False, activation=True, weight_init_factor=.1)
|
||||
posttransform = ConvGnLelu(int(nf*1.5), nf, kernel_size=3, bias=False, norm=False, activation=True, weight_init_factor=.1)
|
||||
if has_ref:
|
||||
self.ref_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.3, final_norm=False, kernel_size=1, depth=2)
|
||||
else:
|
||||
self.ref_join = None
|
||||
self.switch = ConfigurableSwitchComputer(nf, multiplx_fn,
|
||||
pre_transform_block=pretransform, transform_block=transform_fn,
|
||||
post_transform_block=posttransform,
|
||||
attention_norm=True,
|
||||
transform_count=self.transformation_counts, init_temp=init_temperature,
|
||||
add_scalable_noise_to_transforms=False, feed_transforms_into_multiplexer=False)
|
||||
|
||||
def forward(self, x, ref=None):
|
||||
if self.ref_join is not None:
|
||||
branch, ref_std = self.ref_join(x, ref)
|
||||
return self.switch(branch, identity=x) + (ref_std,)
|
||||
else:
|
||||
return self.switch(x, identity=x)
|
||||
|
||||
|
||||
class SsgSimpler(SwitchModelBase):
|
||||
def __init__(self, in_nc, out_nc, nf, xforms=8, init_temperature=10, recurrent=False):
|
||||
super(SsgSimpler, self).__init__(init_temperature, 10000)
|
||||
self.nf = nf
|
||||
|
||||
# processing the input embedding
|
||||
if recurrent:
|
||||
self.recurrent = True
|
||||
self.recurrent_process = ConvGnLelu(in_nc, nf, kernel_size=3, stride=2, norm=False, bias=True, activation=False)
|
||||
self.recurrent_join = ReferenceJoinBlock(nf, residual_weight_init_factor=.01, final_norm=False, kernel_size=1, depth=3, join=False)
|
||||
else:
|
||||
self.recurrent = False
|
||||
|
||||
# Feature branch
|
||||
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=7, norm=False, activation=False)
|
||||
self.sw1 = SimplerSwitchWithReference(nf, xforms, init_temperature, has_ref=False)
|
||||
self.sw2 = SimplerSwitchWithReference(nf, xforms, init_temperature, has_ref=False)
|
||||
|
||||
# Grad branch. Note - groupnorm on this branch is REALLY bad. Avoid it like the plague.
|
||||
self.get_g_nopadding = ImageGradientNoPadding()
|
||||
self.grad_conv = ConvGnLelu(in_nc, nf, kernel_size=7, norm=False, activation=False, bias=False)
|
||||
self.sw_grad = SimplerSwitchWithReference(nf, xforms // 2, init_temperature, has_ref=True)
|
||||
self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
||||
self.upsample_grad = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=False)
|
||||
self.grad_branch_output_conv = ConvGnLelu(nf // 2, out_nc, kernel_size=1, norm=False, activation=False, bias=True)
|
||||
|
||||
# Join branch (grad+fea)
|
||||
self.conjoin_sw = SimplerSwitchWithReference(nf, xforms, init_temperature, has_ref=True)
|
||||
self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=True, bias=True)
|
||||
self.upsample = UpconvBlock(nf, nf // 2, block=ConvGnLelu, norm=False, activation=True, bias=True)
|
||||
self.final_hr_conv1 = ConvGnLelu(nf // 2, nf // 2, kernel_size=3, norm=False, activation=False, bias=True)
|
||||
self.final_hr_conv2 = ConvGnLelu(nf // 2, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
|
||||
self.switches = [self.sw1.switch, self.sw2.switch, self.sw_grad.switch, self.conjoin_sw.switch]
|
||||
|
||||
def forward(self, x, save_attentions=True, recurrent=None):
|
||||
# The attention_maps debugger outputs <x>. Save that here.
|
||||
self.lr = x.detach().cpu()
|
||||
|
||||
# If we're not saving attention, we also shouldn't be updating the attention norm. This is because the attention
|
||||
# norm should only be getting updates with new data, not recurrent generator sampling.
|
||||
for sw in self.switches:
|
||||
sw.set_update_attention_norm(save_attentions)
|
||||
|
||||
x1 = self.model_fea_conv(x)
|
||||
if self.recurrent:
|
||||
rec = self.recurrent_process(recurrent)
|
||||
x1, recurrent_std = self.recurrent_join(x1, rec)
|
||||
x1, a1 = checkpoint(self.sw1, x1)
|
||||
x2, a2 = checkpoint(self.sw2, x1)
|
||||
|
||||
x_grad = self.get_g_nopadding(x)
|
||||
x_grad = self.grad_conv(x_grad)
|
||||
x_grad, a3, grad_fea_std = checkpoint(self.sw_grad, x_grad, x1)
|
||||
x_grad = checkpoint(self.grad_lr_conv, x_grad)
|
||||
x_grad_out = checkpoint(self.upsample_grad, x_grad)
|
||||
x_grad_out = checkpoint(self.grad_branch_output_conv, x_grad_out)
|
||||
|
||||
x3, a4, fea_grad_std = checkpoint(self.conjoin_sw, x2, x_grad)
|
||||
x_out = checkpoint(self.final_lr_conv, x3)
|
||||
x_out = checkpoint(self.upsample, x_out)
|
||||
x_out = checkpoint(self.final_hr_conv2, x_out)
|
||||
|
||||
if save_attentions:
|
||||
self.attentions = [a1, a2, a3, a4]
|
||||
self.grad_fea_std = grad_fea_std.detach().cpu()
|
||||
self.fea_grad_std = fea_grad_std.detach().cpu()
|
||||
return x_grad_out, x_out
|
|
@ -79,6 +79,7 @@ def gather_2d(input, index):
|
|||
|
||||
class ConfigurableSwitchComputer(nn.Module):
|
||||
def __init__(self, base_filters, multiplexer_net, pre_transform_block, transform_block, transform_count, attention_norm,
|
||||
post_transform_block=None,
|
||||
init_temp=20, add_scalable_noise_to_transforms=False, feed_transforms_into_multiplexer=False, post_switch_conv=True,
|
||||
anorm_multiplier=16):
|
||||
super(ConfigurableSwitchComputer, self).__init__()
|
||||
|
@ -98,6 +99,8 @@ class ConfigurableSwitchComputer(nn.Module):
|
|||
# And the switch itself, including learned scalars
|
||||
self.switch = BareConvSwitch(initial_temperature=init_temp, attention_norm=AttentionNorm(transform_count, accumulator_size=anorm_multiplier * transform_count) if attention_norm else None)
|
||||
self.switch_scale = nn.Parameter(torch.full((1,), float(1)))
|
||||
if post_transform_block is not None:
|
||||
self.post_transform_block = post_transform_block
|
||||
if post_switch_conv:
|
||||
self.post_switch_conv = ConvBnLelu(base_filters, base_filters, norm=False, bias=True)
|
||||
# The post_switch_conv gets a low scale initially. The network can decide to magnify it (or not)
|
||||
|
@ -154,6 +157,9 @@ class ConfigurableSwitchComputer(nn.Module):
|
|||
|
||||
# It is assumed that [xformed] and [m] are collapsed into tensors at this point.
|
||||
outputs, attention, att_logits = self.switch(xformed, m, True, self.update_norm, output_attention_logits=True)
|
||||
if self.post_transform_block is not None:
|
||||
outputs = self.post_transform_block(outputs)
|
||||
|
||||
outputs = identity + outputs * self.switch_scale * fixed_scale
|
||||
if self.post_switch_conv is not None:
|
||||
outputs = outputs + self.post_switch_conv(outputs) * self.psc_scale * fixed_scale
|
||||
|
|
|
@ -109,6 +109,10 @@ def define_G(opt, net_key='network_G', scale=None):
|
|||
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
|
||||
netG = ssg.SSGDeep(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms, upscale=opt_net['scale'],
|
||||
init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
|
||||
elif which_model == 'ssg_simpler':
|
||||
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
|
||||
netG = ssg.SsgSimpler(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms,
|
||||
init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
|
||||
elif which_model == 'ssg_teco':
|
||||
netG = ssg.StackedSwitchGenerator2xTeco(nf=opt_net['nf'], xforms=opt_net['num_transforms'], init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
|
||||
elif which_model == 'big_switch':
|
||||
|
|
|
@ -30,7 +30,7 @@ def init_dist(backend='nccl', **kwargs):
|
|||
def main():
|
||||
#### options
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_bigswitch.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_ssgsimpler.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
Loading…
Reference in New Issue
Block a user