forked from mrq/DL-Art-School
nv_tacotron_dataset: allow it to load conditioning signals
This commit is contained in:
parent
07b0124712
commit
702607556d
|
@ -11,6 +11,7 @@ from tqdm import tqdm
|
||||||
|
|
||||||
import models.tacotron2.layers as layers
|
import models.tacotron2.layers as layers
|
||||||
from data.audio.unsupervised_audio_dataset import load_audio
|
from data.audio.unsupervised_audio_dataset import load_audio
|
||||||
|
from data.util import find_files_of_type, is_audio_file
|
||||||
from models.tacotron2.taco_utils import load_wav_to_torch, load_filepaths_and_text
|
from models.tacotron2.taco_utils import load_wav_to_torch, load_filepaths_and_text
|
||||||
|
|
||||||
from models.tacotron2.text import text_to_sequence
|
from models.tacotron2.text import text_to_sequence
|
||||||
|
@ -50,13 +51,18 @@ class TextWavLoader(torch.utils.data.Dataset):
|
||||||
fetcher_mode = [fetcher_mode]
|
fetcher_mode = [fetcher_mode]
|
||||||
assert len(self.path) == len(fetcher_mode)
|
assert len(self.path) == len(fetcher_mode)
|
||||||
|
|
||||||
|
self.load_conditioning = opt_get(hparams, ['load_conditioning'], False)
|
||||||
|
self.conditioning_candidates = opt_get(hparams, ['num_conditioning_candidates'], 3)
|
||||||
|
self.conditioning_length = opt_get(hparams, ['conditioning_length'], 44100)
|
||||||
self.audiopaths_and_text = []
|
self.audiopaths_and_text = []
|
||||||
for p, fm in zip(self.path, fetcher_mode):
|
for p, fm in zip(self.path, fetcher_mode):
|
||||||
if fm == 'lj' or fm == 'libritts':
|
if fm == 'lj' or fm == 'libritts':
|
||||||
fetcher_fn = load_filepaths_and_text
|
fetcher_fn = load_filepaths_and_text
|
||||||
elif fm == 'mozilla_cv':
|
elif fm == 'mozilla_cv':
|
||||||
|
assert not self.load_conditioning # Conditioning inputs are incompatible with mozilla_cv
|
||||||
fetcher_fn = load_mozilla_cv
|
fetcher_fn = load_mozilla_cv
|
||||||
elif fm == 'voxpopuli':
|
elif fm == 'voxpopuli':
|
||||||
|
assert not self.load_conditioning # Conditioning inputs are incompatible with voxpopuli
|
||||||
fetcher_fn = load_voxpopuli
|
fetcher_fn = load_voxpopuli
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
|
@ -83,12 +89,32 @@ class TextWavLoader(torch.utils.data.Dataset):
|
||||||
text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
|
text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
|
||||||
return text_norm
|
return text_norm
|
||||||
|
|
||||||
|
def load_conditioning_candidates(self, path):
|
||||||
|
candidates = find_files_of_type('img', os.path.dirname(path), qualifier=is_audio_file)[0]
|
||||||
|
assert len(candidates) < 50000 # Sanity check to ensure we aren't loading "related files" that aren't actually related.
|
||||||
|
if len(candidates) == 0:
|
||||||
|
print(f"No conditioning candidates found for {path} (not even the clip itself??)")
|
||||||
|
raise NotImplementedError()
|
||||||
|
# Sample with replacement. This can get repeats, but more conveniently handles situations where there are not enough candidates.
|
||||||
|
related_clips = []
|
||||||
|
for k in range(self.conditioning_candidates):
|
||||||
|
rel_clip = load_audio(random.choice(candidates), self.sample_rate)
|
||||||
|
gap = rel_clip.shape[-1] - self.conditioning_length
|
||||||
|
if gap < 0:
|
||||||
|
rel_clip = F.pad(rel_clip, pad=(0, abs(gap)))
|
||||||
|
elif gap > 0:
|
||||||
|
rand_start = random.randint(0, gap)
|
||||||
|
rel_clip = rel_clip[:, rand_start:rand_start+self.conditioning_length]
|
||||||
|
related_clips.append(rel_clip)
|
||||||
|
return torch.stack(related_clips, dim=0)
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
try:
|
#try:
|
||||||
tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index])
|
tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index])
|
||||||
except:
|
cond = self.load_conditioning_candidates(self.audiopaths_and_text[index][0]) if self.load_conditioning else None
|
||||||
print(f"error loadding {self.audiopaths_and_text[index][0]}")
|
#except:
|
||||||
return self[index+1]
|
# print(f"error loading {self.audiopaths_and_text[index][0]}")
|
||||||
|
# return self[index+1]
|
||||||
if wav is None or \
|
if wav is None or \
|
||||||
(self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or \
|
(self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or \
|
||||||
(self.max_text_len is not None and tseq.shape[0] > self.max_text_len):
|
(self.max_text_len is not None and tseq.shape[0] > self.max_text_len):
|
||||||
|
@ -105,7 +131,7 @@ class TextWavLoader(torch.utils.data.Dataset):
|
||||||
wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
|
wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
|
||||||
if tseq.shape[0] != self.max_text_len:
|
if tseq.shape[0] != self.max_text_len:
|
||||||
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
|
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
|
||||||
return {
|
res = {
|
||||||
'real_text': text,
|
'real_text': text,
|
||||||
'padded_text': tseq,
|
'padded_text': tseq,
|
||||||
'text_lengths': torch.tensor(orig_text_len, dtype=torch.long),
|
'text_lengths': torch.tensor(orig_text_len, dtype=torch.long),
|
||||||
|
@ -113,7 +139,10 @@ class TextWavLoader(torch.utils.data.Dataset):
|
||||||
'wav_lengths': torch.tensor(orig_output, dtype=torch.long),
|
'wav_lengths': torch.tensor(orig_output, dtype=torch.long),
|
||||||
'filenames': path
|
'filenames': path
|
||||||
}
|
}
|
||||||
return tseq, wav, path, text
|
if self.load_conditioning:
|
||||||
|
res['conditioning'] = cond
|
||||||
|
return res
|
||||||
|
return tseq, wav, path, text, cond
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.audiopaths_and_text)
|
return len(self.audiopaths_and_text)
|
||||||
|
@ -138,11 +167,15 @@ class TextMelCollate():
|
||||||
text_padded.zero_()
|
text_padded.zero_()
|
||||||
filenames = []
|
filenames = []
|
||||||
real_text = []
|
real_text = []
|
||||||
|
conds = []
|
||||||
for i in range(len(ids_sorted_decreasing)):
|
for i in range(len(ids_sorted_decreasing)):
|
||||||
text = batch[ids_sorted_decreasing[i]][0]
|
text = batch[ids_sorted_decreasing[i]][0]
|
||||||
text_padded[i, :text.size(0)] = text
|
text_padded[i, :text.size(0)] = text
|
||||||
filenames.append(batch[ids_sorted_decreasing[i]][2])
|
filenames.append(batch[ids_sorted_decreasing[i]][2])
|
||||||
real_text.append(batch[ids_sorted_decreasing[i]][3])
|
real_text.append(batch[ids_sorted_decreasing[i]][3])
|
||||||
|
c = batch[ids_sorted_decreasing[i]][4]
|
||||||
|
if c is not None:
|
||||||
|
conds.append(c)
|
||||||
|
|
||||||
# Right zero-pad wav
|
# Right zero-pad wav
|
||||||
num_wavs = batch[0][1].size(0)
|
num_wavs = batch[0][1].size(0)
|
||||||
|
@ -157,7 +190,7 @@ class TextMelCollate():
|
||||||
wav_padded[i, :, :wav.size(1)] = wav
|
wav_padded[i, :, :wav.size(1)] = wav
|
||||||
output_lengths[i] = wav.size(1)
|
output_lengths[i] = wav.size(1)
|
||||||
|
|
||||||
return {
|
res = {
|
||||||
'padded_text': text_padded,
|
'padded_text': text_padded,
|
||||||
'text_lengths': input_lengths,
|
'text_lengths': input_lengths,
|
||||||
'wav': wav_padded,
|
'wav': wav_padded,
|
||||||
|
@ -165,21 +198,25 @@ class TextMelCollate():
|
||||||
'filenames': filenames,
|
'filenames': filenames,
|
||||||
'real_text': real_text,
|
'real_text': real_text,
|
||||||
}
|
}
|
||||||
|
if len(conds) > 0:
|
||||||
|
res['conditioning'] = torch.stack(conds)
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
batch_sz = 32
|
batch_sz = 8
|
||||||
params = {
|
params = {
|
||||||
'mode': 'nv_tacotron',
|
'mode': 'nv_tacotron',
|
||||||
'path': ['Z:\\bigasr_dataset\\libritts\\test-clean_list.txt'],
|
'path': ['Z:\\bigasr_dataset\\libritts\\test-clean_list.txt'],
|
||||||
'phase': 'train',
|
'phase': 'train',
|
||||||
'n_workers': 1,
|
'n_workers': 0,
|
||||||
'batch_size': batch_sz,
|
'batch_size': batch_sz,
|
||||||
'fetcher_mode': ['libritts'],
|
'fetcher_mode': ['libritts'],
|
||||||
'needs_collate': True,
|
'needs_collate': True,
|
||||||
'max_wav_length': 256000,
|
'max_wav_length': 256000,
|
||||||
'max_text_length': 200,
|
'max_text_length': 200,
|
||||||
'sample_rate': 22050,
|
'sample_rate': 22050,
|
||||||
|
'load_conditioning': True,
|
||||||
}
|
}
|
||||||
from data import create_dataset, create_dataloader
|
from data import create_dataset, create_dataloader
|
||||||
|
|
||||||
|
@ -187,9 +224,12 @@ if __name__ == '__main__':
|
||||||
dl = create_dataloader(ds, params, collate_fn=c)
|
dl = create_dataloader(ds, params, collate_fn=c)
|
||||||
i = 0
|
i = 0
|
||||||
m = None
|
m = None
|
||||||
for k in range(1000):
|
for i, b in tqdm(enumerate(dl)):
|
||||||
for i, b in tqdm(enumerate(dl)):
|
if i > 5:
|
||||||
w = b['wav']
|
break
|
||||||
for ib in range(batch_sz):
|
w = b['wav']
|
||||||
print(f'{i} {ib} {b["real_text"][ib]}')
|
for ib in range(batch_sz):
|
||||||
torchaudio.save(f'{i}_clip_{ib}.wav', b['wav'][ib], ds.sample_rate)
|
print(f'{i} {ib} {b["real_text"][ib]}')
|
||||||
|
torchaudio.save(f'{i}_clip_{ib}.wav', b['wav'][ib], ds.sample_rate)
|
||||||
|
for c in range(3):
|
||||||
|
torchaudio.save(f'{i}_clip_{ib}_cond{c}.wav', b['conditioning'][ib, c], ds.sample_rate)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user