forked from mrq/DL-Art-School
Make vqvae3_hard more configurable
This commit is contained in:
parent
b980028ca8
commit
7070142805
|
@ -146,14 +146,16 @@ class SwitchNorm(nn.Module):
|
|||
|
||||
|
||||
class HardRoutingGate(nn.Module):
|
||||
def __init__(self, breadth):
|
||||
def __init__(self, breadth, hard_en=True):
|
||||
super().__init__()
|
||||
self.norm = SwitchNorm(breadth, accumulator_size=256)
|
||||
self.hard_en = hard_en
|
||||
|
||||
def forward(self, x):
|
||||
soft = self.norm(nn.functional.softmax(x, dim=1))
|
||||
hard = RouteTop1.apply(soft) # This variant can route gradients downstream.
|
||||
return hard
|
||||
if self.hard_en:
|
||||
return RouteTop1.apply(soft)
|
||||
return soft
|
||||
|
||||
|
||||
class SwitchedConvHardRouting(nn.Module):
|
||||
|
@ -167,7 +169,8 @@ class SwitchedConvHardRouting(nn.Module):
|
|||
dropout_rate=0.0,
|
||||
include_coupler: bool = False, # A 'coupler' is a latent converter which can make any bxcxhxw tensor a compatible switchedconv selector by performing a linear 1x1 conv, softmax and interpolate.
|
||||
coupler_mode: str = 'standard',
|
||||
coupler_dim_in: int = 0):
|
||||
coupler_dim_in: int = 0,
|
||||
hard_en=True): # A test switch that, when used in 'emulation mode' (where all convs are calculated using torch functions) computes soft-attention instead of hard-attention.
|
||||
super().__init__()
|
||||
self.in_channels = in_c
|
||||
self.out_channels = out_c
|
||||
|
@ -190,7 +193,7 @@ class SwitchedConvHardRouting(nn.Module):
|
|||
Conv2d(breadth, breadth, 1, stride=self.stride))
|
||||
else:
|
||||
self.coupler = None
|
||||
self.gate = HardRoutingGate(breadth)
|
||||
self.gate = HardRoutingGate(breadth, hard_en=hard_en)
|
||||
|
||||
self.weight = nn.Parameter(torch.empty(out_c, in_c, breadth, kernel_sz, kernel_sz))
|
||||
if bias:
|
||||
|
|
|
@ -15,10 +15,10 @@ from utils.util import checkpoint, opt_get
|
|||
|
||||
# Upsamples and blurs (similar to StyleGAN). Replaces ConvTranspose2D from the original paper.
|
||||
class UpsampleConv(nn.Module):
|
||||
def __init__(self, in_filters, out_filters, kernel_size, padding):
|
||||
def __init__(self, in_filters, out_filters, kernel_size, padding, cfg):
|
||||
super().__init__()
|
||||
self.conv = SwitchedConvHardRouting(in_filters, out_filters, kernel_size, breadth=16, include_coupler=True,
|
||||
coupler_mode='standard', coupler_dim_in=in_filters, dropout_rate=0.4)
|
||||
self.conv = SwitchedConvHardRouting(in_filters, out_filters, kernel_size, breadth=cfg['breadth'], include_coupler=True,
|
||||
coupler_mode=cfg['mode'], coupler_dim_in=in_filters, dropout_rate=cfg['dropout'], hard_en=cfg['hard_enabled'])
|
||||
|
||||
def forward(self, x):
|
||||
up = torch.nn.functional.interpolate(x, scale_factor=2)
|
||||
|
@ -26,26 +26,26 @@ class UpsampleConv(nn.Module):
|
|||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride):
|
||||
def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride, cfg):
|
||||
super().__init__()
|
||||
|
||||
if stride == 4:
|
||||
blocks = [
|
||||
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
|
||||
nn.LeakyReLU(inplace=True),
|
||||
SwitchedConvHardRouting(channel // 2, channel, 5, breadth=16, stride=2, include_coupler=True,
|
||||
coupler_mode='standard', coupler_dim_in=channel // 2, dropout_rate=0.4),
|
||||
SwitchedConvHardRouting(channel // 2, channel, 5, breadth=cfg['breadth'], stride=2, include_coupler=True,
|
||||
coupler_mode=cfg['mode'], coupler_dim_in=channel // 2, dropout_rate=cfg['dropout'], hard_en=cfg['hard_enabled']),
|
||||
nn.LeakyReLU(inplace=True),
|
||||
SwitchedConvHardRouting(channel, channel, 3, breadth=16, include_coupler=True, coupler_mode='standard',
|
||||
coupler_dim_in=channel, dropout_rate=0.4),
|
||||
SwitchedConvHardRouting(channel, channel, 3, breadth=cfg['breadth'], include_coupler=True, coupler_mode=cfg['mode'],
|
||||
coupler_dim_in=channel, dropout_rate=cfg['dropout'], hard_en=cfg['hard_enabled']),
|
||||
]
|
||||
|
||||
elif stride == 2:
|
||||
blocks = [
|
||||
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
|
||||
nn.LeakyReLU(inplace=True),
|
||||
SwitchedConvHardRouting(channel // 2, channel, 3, breadth=16, include_coupler=True, coupler_mode='standard',
|
||||
coupler_dim_in=channel // 2, dropout_rate=0.4),
|
||||
SwitchedConvHardRouting(channel // 2, channel, 3, breadth=cfg['breadth'], include_coupler=True, coupler_mode=cfg['mode'],
|
||||
coupler_dim_in=channel // 2, dropout_rate=cfg['dropout'], hard_en=cfg['hard_enabled']),
|
||||
]
|
||||
|
||||
for i in range(n_res_block):
|
||||
|
@ -61,12 +61,12 @@ class Encoder(nn.Module):
|
|||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride
|
||||
self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride, cfg
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
blocks = [SwitchedConvHardRouting(in_channel, channel, 3, breadth=16, include_coupler=True, coupler_mode='standard',
|
||||
coupler_dim_in=in_channel, dropout_rate=0.4)]
|
||||
blocks = [SwitchedConvHardRouting(in_channel, channel, 3, breadth=cfg['breadth'], include_coupler=True, coupler_mode=cfg['mode'],
|
||||
coupler_dim_in=in_channel, dropout_rate=cfg['dropout'], hard_en=cfg['hard_enabled'])]
|
||||
|
||||
for i in range(n_res_block):
|
||||
blocks.append(ResBlock(channel, n_res_channel))
|
||||
|
@ -76,17 +76,17 @@ class Decoder(nn.Module):
|
|||
if stride == 4:
|
||||
blocks.extend(
|
||||
[
|
||||
UpsampleConv(channel, channel // 2, 5, padding=2),
|
||||
UpsampleConv(channel, channel // 2, 5, padding=2, cfg=cfg),
|
||||
nn.LeakyReLU(inplace=True),
|
||||
UpsampleConv(
|
||||
channel // 2, out_channel, 5, padding=2
|
||||
channel // 2, out_channel, 5, padding=2, cfg=cfg
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
elif stride == 2:
|
||||
blocks.append(
|
||||
UpsampleConv(channel, out_channel, 5, padding=2)
|
||||
UpsampleConv(channel, out_channel, 5, padding=2, cfg=cfg)
|
||||
)
|
||||
|
||||
self.blocks = nn.Sequential(*blocks)
|
||||
|
@ -105,22 +105,24 @@ class VQVAE3HardSwitch(nn.Module):
|
|||
codebook_dim=64,
|
||||
codebook_size=512,
|
||||
decay=0.99,
|
||||
cfg={'mode':'standard', 'breadth':16, 'hard_enabled': True, 'dropout': 0.4}
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.cfg = cfg
|
||||
self.initial_conv = nn.Sequential(*[nn.Conv2d(in_channel, 32, 3, padding=1),
|
||||
nn.LeakyReLU(inplace=True)])
|
||||
self.enc_b = Encoder(32, channel, n_res_block, n_res_channel, stride=4)
|
||||
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2)
|
||||
self.enc_b = Encoder(32, channel, n_res_block, n_res_channel, stride=4, cfg=cfg)
|
||||
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2, cfg=cfg)
|
||||
self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1)
|
||||
self.quantize_t = Quantize(codebook_dim, codebook_size)
|
||||
self.dec_t = Decoder(
|
||||
codebook_dim, codebook_dim, channel, n_res_block, n_res_channel, stride=2
|
||||
codebook_dim, codebook_dim, channel, n_res_block, n_res_channel, stride=2, cfg=cfg
|
||||
)
|
||||
self.quantize_conv_b = nn.Conv2d(codebook_dim + channel, codebook_dim, 1)
|
||||
self.quantize_b = Quantize(codebook_dim, codebook_size)
|
||||
self.upsample_t = UpsampleConv(
|
||||
codebook_dim, codebook_dim, 5, padding=2
|
||||
codebook_dim, codebook_dim, 5, padding=2, cfg=cfg
|
||||
)
|
||||
self.dec = Decoder(
|
||||
codebook_dim + codebook_dim,
|
||||
|
@ -129,6 +131,7 @@ class VQVAE3HardSwitch(nn.Module):
|
|||
n_res_block,
|
||||
n_res_channel,
|
||||
stride=4,
|
||||
cfg=cfg
|
||||
)
|
||||
self.final_conv = nn.Conv2d(32, in_channel, 3, padding=1)
|
||||
|
||||
|
@ -211,7 +214,7 @@ def convert_weights(weights_file):
|
|||
from models.vqvae.vqvae_3 import VQVAE3
|
||||
std_model = VQVAE3()
|
||||
std_model.load_state_dict(sd)
|
||||
nsd = convert_conv_net_state_dict_to_switched_conv(std_model, 16, ['quantize_conv_t', 'quantize_conv_b',
|
||||
nsd = convert_conv_net_state_dict_to_switched_conv(std_model, 8, ['quantize_conv_t', 'quantize_conv_b',
|
||||
'enc_b.blocks.0', 'enc_t.blocks.0',
|
||||
'conv.1', 'conv.3', 'initial_conv', 'final_conv'])
|
||||
torch.save(nsd, "converted.pth")
|
||||
|
@ -224,7 +227,13 @@ def register_vqvae3_hard_switch(opt_net, opt):
|
|||
|
||||
|
||||
def performance_test():
|
||||
net = VQVAE3HardSwitch().to('cuda')
|
||||
cfg = {
|
||||
'mode': 'lambda',
|
||||
'breadth': 8,
|
||||
'hard_enabled': False,
|
||||
'dropout': 0
|
||||
}
|
||||
net = VQVAE3HardSwitch(cfg=cfg).to('cuda')
|
||||
loss = nn.L1Loss()
|
||||
opt = torch.optim.Adam(net.parameters(), lr=1e-4)
|
||||
started = time()
|
||||
|
@ -241,5 +250,5 @@ def performance_test():
|
|||
if __name__ == '__main__':
|
||||
#v = VQVAE3HardSwitch()
|
||||
#print(v(torch.randn(1,3,128,128))[0].shape)
|
||||
#convert_weights("../../../experiments/test_vqvae3.pth")
|
||||
performance_test()
|
||||
convert_weights("../../../experiments/test_vqvae3.pth")
|
||||
#performance_test()
|
||||
|
|
|
@ -295,7 +295,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_tiled_nvqvae_stage1_lambda.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_vqvae3_stage1.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
Loading…
Reference in New Issue
Block a user