forked from mrq/DL-Art-School
Remove separated vgg discriminator
Checkpointing happens inline instead. Was a dumb idea.. Also fixes some loss reporting issues.
This commit is contained in:
parent
c709d38cd5
commit
7df378a944
|
@ -3,6 +3,7 @@ import torch.nn as nn
|
||||||
from models.archs.arch_util import ConvBnLelu, ConvGnLelu, ExpansionBlock, ConvGnSilu
|
from models.archs.arch_util import ConvBnLelu, ConvGnLelu, ExpansionBlock, ConvGnSilu
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from models.archs.SwitchedResidualGenerator_arch import gather_2d
|
from models.archs.SwitchedResidualGenerator_arch import gather_2d
|
||||||
|
from utils.util import checkpoint
|
||||||
|
|
||||||
|
|
||||||
class Discriminator_VGG_128(nn.Module):
|
class Discriminator_VGG_128(nn.Module):
|
||||||
|
@ -79,8 +80,10 @@ class Discriminator_VGG_128(nn.Module):
|
||||||
|
|
||||||
class Discriminator_VGG_128_GN(nn.Module):
|
class Discriminator_VGG_128_GN(nn.Module):
|
||||||
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
|
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
|
||||||
def __init__(self, in_nc, nf, input_img_factor=1):
|
def __init__(self, in_nc, nf, input_img_factor=1, do_checkpointing=False):
|
||||||
super(Discriminator_VGG_128_GN, self).__init__()
|
super(Discriminator_VGG_128_GN, self).__init__()
|
||||||
|
self.do_checkpointing = do_checkpointing
|
||||||
|
|
||||||
# [64, 128, 128]
|
# [64, 128, 128]
|
||||||
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
||||||
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
||||||
|
@ -113,7 +116,7 @@ class Discriminator_VGG_128_GN(nn.Module):
|
||||||
self.linear1 = nn.Linear(int(final_nf * 4 * input_img_factor * 4 * input_img_factor), 100)
|
self.linear1 = nn.Linear(int(final_nf * 4 * input_img_factor * 4 * input_img_factor), 100)
|
||||||
self.linear2 = nn.Linear(100, 1)
|
self.linear2 = nn.Linear(100, 1)
|
||||||
|
|
||||||
def forward(self, x):
|
def compute_body(self, x):
|
||||||
fea = self.lrelu(self.conv0_0(x))
|
fea = self.lrelu(self.conv0_0(x))
|
||||||
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
|
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
|
||||||
|
|
||||||
|
@ -130,63 +133,13 @@ class Discriminator_VGG_128_GN(nn.Module):
|
||||||
|
|
||||||
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
|
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
|
||||||
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
|
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
|
||||||
|
return fea
|
||||||
fea = fea.contiguous().view(fea.size(0), -1)
|
|
||||||
fea = self.lrelu(self.linear1(fea))
|
|
||||||
out = self.linear2(fea)
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
from utils.util import checkpoint
|
|
||||||
class Discriminator_VGG_128_GN_Checkpointed(nn.Module):
|
|
||||||
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
|
|
||||||
def __init__(self, in_nc, nf, input_img_factor=1):
|
|
||||||
super(Discriminator_VGG_128_GN_Checkpointed, self).__init__()
|
|
||||||
# [64, 128, 128]
|
|
||||||
conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
||||||
conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
|
||||||
bn0_1 = nn.GroupNorm(8, nf, affine=True)
|
|
||||||
# [64, 64, 64]
|
|
||||||
conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
|
||||||
bn1_0 = nn.GroupNorm(8, nf * 2, affine=True)
|
|
||||||
conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
|
||||||
bn1_1 = nn.GroupNorm(8, nf * 2, affine=True)
|
|
||||||
# [128, 32, 32]
|
|
||||||
conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
|
||||||
bn2_0 = nn.GroupNorm(8, nf * 4, affine=True)
|
|
||||||
conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
|
||||||
bn2_1 = nn.GroupNorm(8, nf * 4, affine=True)
|
|
||||||
# [256, 16, 16]
|
|
||||||
conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
|
|
||||||
bn3_0 = nn.GroupNorm(8, nf * 8, affine=True)
|
|
||||||
conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
||||||
bn3_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
|
||||||
# [512, 8, 8]
|
|
||||||
conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
|
|
||||||
bn4_0 = nn.GroupNorm(8, nf * 8, affine=True)
|
|
||||||
conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
||||||
bn4_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
|
||||||
final_nf = nf * 8
|
|
||||||
|
|
||||||
# activation function
|
|
||||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
||||||
|
|
||||||
self.body = nn.Sequential(conv0_0, self.lrelu,
|
|
||||||
conv0_1, bn0_1, self.lrelu,
|
|
||||||
conv1_0, bn1_0, self.lrelu,
|
|
||||||
conv1_1, bn1_1, self.lrelu,
|
|
||||||
conv2_0, bn2_0, self.lrelu,
|
|
||||||
conv2_1, bn2_1, self.lrelu,
|
|
||||||
conv3_0, bn3_0, self.lrelu,
|
|
||||||
conv3_1, bn3_1, self.lrelu,
|
|
||||||
conv4_0, bn4_0, self.lrelu,
|
|
||||||
conv4_1, bn4_1, self.lrelu)
|
|
||||||
|
|
||||||
self.linear1 = nn.Linear(int(final_nf * 4 * input_img_factor * 4 * input_img_factor), 100)
|
|
||||||
self.linear2 = nn.Linear(100, 1)
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
fea = checkpoint(self.body, x)
|
if self.do_checkpointing:
|
||||||
|
fea = checkpoint(self.compute_body, x)
|
||||||
|
else:
|
||||||
|
fea = self.compute_body(x)
|
||||||
fea = fea.contiguous().view(fea.size(0), -1)
|
fea = fea.contiguous().view(fea.size(0), -1)
|
||||||
fea = self.lrelu(self.linear1(fea))
|
fea = self.lrelu(self.linear1(fea))
|
||||||
out = self.linear2(fea)
|
out = self.linear2(fea)
|
||||||
|
|
|
@ -172,7 +172,7 @@ def define_D_net(opt_net, img_sz=None, wrap=False):
|
||||||
if wrap:
|
if wrap:
|
||||||
netD = GradDiscWrapper(netD)
|
netD = GradDiscWrapper(netD)
|
||||||
elif which_model == 'discriminator_vgg_128_gn_checkpointed':
|
elif which_model == 'discriminator_vgg_128_gn_checkpointed':
|
||||||
netD = SRGAN_arch.Discriminator_VGG_128_GN_Checkpointed(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128)
|
netD = SRGAN_arch.Discriminator_VGG_128_GN(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128, do_checkpointing=True)
|
||||||
elif which_model == 'discriminator_resnet':
|
elif which_model == 'discriminator_resnet':
|
||||||
netD = DiscriminatorResnet_arch.fixup_resnet34(num_filters=opt_net['nf'], num_classes=1, input_img_size=img_sz)
|
netD = DiscriminatorResnet_arch.fixup_resnet34(num_filters=opt_net['nf'], num_classes=1, input_img_size=img_sz)
|
||||||
elif which_model == 'discriminator_resnet_50':
|
elif which_model == 'discriminator_resnet_50':
|
||||||
|
|
|
@ -169,8 +169,10 @@ class GeneratorGanLoss(ConfigurableLoss):
|
||||||
if self.detach_real:
|
if self.detach_real:
|
||||||
pred_d_real = pred_d_real.detach()
|
pred_d_real = pred_d_real.detach()
|
||||||
pred_g_fake = netD(*fake)
|
pred_g_fake = netD(*fake)
|
||||||
|
d_fake_diff = self.criterion(pred_g_fake - torch.mean(pred_d_real), True)
|
||||||
|
self.metrics.append(("d_fake_diff", torch.mean(d_fake_diff)))
|
||||||
loss = (self.criterion(pred_d_real - torch.mean(pred_g_fake), False) +
|
loss = (self.criterion(pred_d_real - torch.mean(pred_g_fake), False) +
|
||||||
self.criterion(pred_g_fake - torch.mean(pred_d_real), True)) / 2
|
d_fake_diff) / 2
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
if self.min_loss != 0:
|
if self.min_loss != 0:
|
||||||
|
@ -234,10 +236,10 @@ class DiscriminatorGanLoss(ConfigurableLoss):
|
||||||
if self.min_loss != 0:
|
if self.min_loss != 0:
|
||||||
self.loss_rotating_buffer[self.rb_ptr] = loss.item()
|
self.loss_rotating_buffer[self.rb_ptr] = loss.item()
|
||||||
self.rb_ptr = (self.rb_ptr + 1) % self.loss_rotating_buffer.shape[0]
|
self.rb_ptr = (self.rb_ptr + 1) % self.loss_rotating_buffer.shape[0]
|
||||||
|
self.metrics.append(("loss_counter", self.losses_computed))
|
||||||
if torch.mean(self.loss_rotating_buffer) < self.min_loss:
|
if torch.mean(self.loss_rotating_buffer) < self.min_loss:
|
||||||
return 0
|
return 0
|
||||||
self.losses_computed += 1
|
self.losses_computed += 1
|
||||||
self.metrics.append(("loss_counter", self.losses_computed))
|
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user