forked from mrq/DL-Art-School
Re-add biases, also add new init
A/B testing where we lost our GAN competitiveness.
This commit is contained in:
parent
b03741f30e
commit
86cda86e94
|
@ -8,11 +8,11 @@ from switched_conv_util import save_attention_to_image
|
||||||
|
|
||||||
|
|
||||||
class ConvBnLelu(nn.Module):
|
class ConvBnLelu(nn.Module):
|
||||||
def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, lelu=True, bn=True, bias=True):
|
def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, lelu=True, bn=True):
|
||||||
super(ConvBnLelu, self).__init__()
|
super(ConvBnLelu, self).__init__()
|
||||||
padding_map = {1: 0, 3: 1, 5: 2, 7: 3}
|
padding_map = {1: 0, 3: 1, 5: 2, 7: 3}
|
||||||
assert kernel_size in padding_map.keys()
|
assert kernel_size in padding_map.keys()
|
||||||
self.conv = nn.Conv2d(filters_in, filters_out, kernel_size, stride, padding_map[kernel_size], bias=bias)
|
self.conv = nn.Conv2d(filters_in, filters_out, kernel_size, stride, padding_map[kernel_size])
|
||||||
if bn:
|
if bn:
|
||||||
self.bn = nn.BatchNorm2d(filters_out)
|
self.bn = nn.BatchNorm2d(filters_out)
|
||||||
else:
|
else:
|
||||||
|
@ -22,6 +22,15 @@ class ConvBnLelu(nn.Module):
|
||||||
else:
|
else:
|
||||||
self.lelu = None
|
self.lelu = None
|
||||||
|
|
||||||
|
# Init params.
|
||||||
|
for m in self.modules():
|
||||||
|
if isinstance(m, nn.Conv2d):
|
||||||
|
nn.init.kaiming_normal_(m.weight, a=.1, mode='fan_out',
|
||||||
|
nonlinearity='leaky_relu' if self.lelu else 'linear')
|
||||||
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
||||||
|
nn.init.constant_(m.weight, 1)
|
||||||
|
nn.init.constant_(m.bias, 0)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x = self.conv(x)
|
x = self.conv(x)
|
||||||
if self.bn:
|
if self.bn:
|
||||||
|
@ -33,14 +42,13 @@ class ConvBnLelu(nn.Module):
|
||||||
|
|
||||||
|
|
||||||
class ResidualBranch(nn.Module):
|
class ResidualBranch(nn.Module):
|
||||||
def __init__(self, filters_in, filters_mid, filters_out, kernel_size, depth, bn=False):
|
def __init__(self, filters_in, filters_mid, filters_out, kernel_size, depth):
|
||||||
assert depth >= 2
|
assert depth >= 2
|
||||||
super(ResidualBranch, self).__init__()
|
super(ResidualBranch, self).__init__()
|
||||||
self.noise_scale = nn.Parameter(torch.full((1,), fill_value=.01))
|
self.noise_scale = nn.Parameter(torch.full((1,), fill_value=.01))
|
||||||
self.bnconvs = nn.ModuleList([ConvBnLelu(filters_in, filters_mid, kernel_size, bn=bn, bias=False)] +
|
self.bnconvs = nn.ModuleList([ConvBnLelu(filters_in, filters_mid, kernel_size, bn=False)] +
|
||||||
[ConvBnLelu(filters_mid, filters_mid, kernel_size, bn=bn, bias=False) for i in range(depth-2)] +
|
[ConvBnLelu(filters_mid, filters_mid, kernel_size, bn=False) for i in range(depth-2)] +
|
||||||
[ConvBnLelu(filters_mid, filters_out, kernel_size, lelu=False, bn=False, bias=False)])
|
[ConvBnLelu(filters_mid, filters_out, kernel_size, lelu=False, bn=False)])
|
||||||
|
|
||||||
self.scale = nn.Parameter(torch.ones(1))
|
self.scale = nn.Parameter(torch.ones(1))
|
||||||
self.bias = nn.Parameter(torch.zeros(1))
|
self.bias = nn.Parameter(torch.zeros(1))
|
||||||
|
|
||||||
|
@ -58,8 +66,9 @@ class ResidualBranch(nn.Module):
|
||||||
class HalvingProcessingBlock(nn.Module):
|
class HalvingProcessingBlock(nn.Module):
|
||||||
def __init__(self, filters):
|
def __init__(self, filters):
|
||||||
super(HalvingProcessingBlock, self).__init__()
|
super(HalvingProcessingBlock, self).__init__()
|
||||||
self.bnconv1 = ConvBnLelu(filters, filters * 2, stride=2, bn=False, bias=False)
|
self.bnconv1 = ConvBnLelu(filters, filters * 2, stride=2, bn=False)
|
||||||
self.bnconv2 = ConvBnLelu(filters * 2, filters * 2, bn=True, bias=False)
|
self.bnconv2 = ConvBnLelu(filters * 2, filters * 2, bn=True)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x = self.bnconv1(x)
|
x = self.bnconv1(x)
|
||||||
return self.bnconv2(x)
|
return self.bnconv2(x)
|
||||||
|
@ -71,7 +80,7 @@ def create_sequential_growing_processing_block(filters_init, filter_growth, num_
|
||||||
convs = []
|
convs = []
|
||||||
current_filters = filters_init
|
current_filters = filters_init
|
||||||
for i in range(num_convs):
|
for i in range(num_convs):
|
||||||
convs.append(ConvBnRelu(current_filters, current_filters + filter_growth, bn=True, bias=False))
|
convs.append(ConvBnLelu(current_filters, current_filters + filter_growth, bn=True))
|
||||||
current_filters += filter_growth
|
current_filters += filter_growth
|
||||||
return nn.Sequential(*convs), current_filters
|
return nn.Sequential(*convs), current_filters
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user