forked from mrq/DL-Art-School
tts9 initial commit
This commit is contained in:
parent
38fd9fc985
commit
94222b0216
|
@ -6,7 +6,6 @@ import torch
|
|||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import autocast
|
||||
from x_transformers.x_transformers import AbsolutePositionalEmbedding, AttentionLayers, CrossAttender
|
||||
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, \
|
||||
|
@ -14,63 +13,7 @@ from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequent
|
|||
from models.gpt_voice.mini_encoder import AudioMiniEncoder
|
||||
from scripts.audio.gen.use_diffuse_tts import ceil_multiple
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint
|
||||
from x_transformers import Encoder, ContinuousTransformerWrapper
|
||||
|
||||
|
||||
def clustered_mask(probability, shape, dev, lateral_expansion_radius_max=3, inverted=False):
|
||||
"""
|
||||
Produces a masking vector of the specified shape where each element has probability to be zero.
|
||||
lateral_expansion_radius_max neighbors of any element that is zero also have a 50% chance to be zero.
|
||||
Effectively, this produces clusters of masks tending to be lateral_expansion_radius_max wide.
|
||||
"""
|
||||
# Each masked token spreads out to 1+lateral_expansion_radius_max on average, therefore reduce the probability in
|
||||
# kind
|
||||
probability = probability / (1+lateral_expansion_radius_max)
|
||||
|
||||
mask = torch.rand(shape, device=dev)
|
||||
mask = (mask < probability).float()
|
||||
kernel = torch.tensor([.5 for _ in range(lateral_expansion_radius_max)] + [1] + [.5 for _ in range(lateral_expansion_radius_max)], device=dev)
|
||||
mask = F.conv1d(mask.unsqueeze(1), kernel.view(1,1,2*lateral_expansion_radius_max+1), padding=lateral_expansion_radius_max).squeeze(1)
|
||||
if inverted:
|
||||
return torch.bernoulli(torch.clamp(mask, 0, 1)) != 0
|
||||
else:
|
||||
return torch.bernoulli(torch.clamp(mask, 0, 1)) == 0
|
||||
|
||||
|
||||
class CheckpointedLayer(nn.Module):
|
||||
"""
|
||||
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
|
||||
checkpoint for all other args.
|
||||
"""
|
||||
def __init__(self, wrap):
|
||||
super().__init__()
|
||||
self.wrap = wrap
|
||||
|
||||
def forward(self, x, *args, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
assert not (isinstance(v, torch.Tensor) and v.requires_grad) # This would screw up checkpointing.
|
||||
partial = functools.partial(self.wrap, **kwargs)
|
||||
return torch.utils.checkpoint.checkpoint(partial, x, *args)
|
||||
|
||||
|
||||
class CheckpointedXTransformerEncoder(nn.Module):
|
||||
"""
|
||||
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
|
||||
to channels-last that XTransformer expects.
|
||||
"""
|
||||
def __init__(self, **xtransformer_kwargs):
|
||||
super().__init__()
|
||||
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
|
||||
|
||||
for i in range(len(self.transformer.attn_layers.layers)):
|
||||
n, b, r = self.transformer.attn_layers.layers[i]
|
||||
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
x = x.permute(0,2,1)
|
||||
h = self.transformer(x, **kwargs)
|
||||
return h.permute(0,2,1)
|
||||
from utils.util import checkpoint, opt_get
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
|
@ -172,7 +115,7 @@ class DiffusionTts(nn.Module):
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
model_channels,
|
||||
model_channels=1024,
|
||||
in_channels=1,
|
||||
in_latent_channels=1024,
|
||||
out_channels=2, # mean and variance
|
||||
|
@ -193,8 +136,6 @@ class DiffusionTts(nn.Module):
|
|||
kernel_size=3,
|
||||
scale_factor=2,
|
||||
time_embed_dim_multiplier=4,
|
||||
cond_transformer_depth=8,
|
||||
mid_transformer_depth=8,
|
||||
# Parameters for regularization.
|
||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
||||
# Parameters for super-sampling.
|
||||
|
@ -234,26 +175,16 @@ class DiffusionTts(nn.Module):
|
|||
|
||||
conditioning_dim = model_channels * 8
|
||||
self.latent_converter = nn.Conv1d(in_latent_channels, conditioning_dim, 1)
|
||||
self.aligned_latent_padding_embedding = nn.Parameter(torch.randn(1,conditioning_dim,1))
|
||||
self.aligned_latent_padding_embedding = nn.Parameter(torch.randn(1,in_latent_channels,1))
|
||||
self.contextual_embedder = AudioMiniEncoder(1, conditioning_dim, base_channels=32, depth=6, resnet_blocks=1,
|
||||
attn_blocks=4, num_attn_heads=8, dropout=dropout, downsample_factor=4, kernel_size=5)
|
||||
attn_blocks=3, num_attn_heads=8, dropout=dropout, downsample_factor=4, kernel_size=5)
|
||||
self.conditioning_conv = nn.Conv1d(conditioning_dim*2, conditioning_dim, 1)
|
||||
self.conditioning_encoder = CheckpointedXTransformerEncoder(
|
||||
max_seq_len=-1, # Should be unused
|
||||
use_pos_emb=False,
|
||||
attn_layers=Encoder(
|
||||
dim=conditioning_dim,
|
||||
depth=cond_transformer_depth,
|
||||
heads=num_heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True
|
||||
)
|
||||
)
|
||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,conditioning_dim,1))
|
||||
self.conditioning_timestep_integrator = TimestepEmbedSequential(
|
||||
ResBlock(conditioning_dim, time_embed_dim, dropout, out_channels=conditioning_dim, dims=dims, kernel_size=1),
|
||||
AttentionBlock(conditioning_dim, num_heads=num_heads, num_head_channels=num_head_channels),
|
||||
ResBlock(conditioning_dim, time_embed_dim, dropout, out_channels=conditioning_dim, dims=dims, kernel_size=1),
|
||||
AttentionBlock(conditioning_dim, num_heads=num_heads, num_head_channels=num_head_channels),
|
||||
ResBlock(conditioning_dim, time_embed_dim, dropout, out_channels=conditioning_dim, dims=dims, kernel_size=1),
|
||||
)
|
||||
|
||||
|
@ -314,20 +245,6 @@ class DiffusionTts(nn.Module):
|
|||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
mid_transformer = CheckpointedXTransformerEncoder(
|
||||
max_seq_len=-1, # Should be unused
|
||||
use_pos_emb=False,
|
||||
attn_layers=Encoder(
|
||||
dim=ch,
|
||||
depth=mid_transformer_depth,
|
||||
heads=num_heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
)
|
||||
)
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
|
@ -336,7 +253,11 @@ class DiffusionTts(nn.Module):
|
|||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
),
|
||||
mid_transformer,
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=num_head_channels,
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
|
@ -391,10 +312,60 @@ class DiffusionTts(nn.Module):
|
|||
'input_blocks': list(self.input_blocks.parameters()),
|
||||
'output_blocks': list(self.output_blocks.parameters()),
|
||||
'middle_transformer': list(self.middle_block.parameters()),
|
||||
'conditioning_encoder': list(self.conditioning_encoder.parameters())
|
||||
}
|
||||
return groups
|
||||
|
||||
|
||||
def forward(self, x, timesteps, aligned_latent, conditioning_input, conditioning_free):
|
||||
hs = []
|
||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
|
||||
# Note: this block does not need to repeated on inference, since it is not timestep-dependent.
|
||||
if conditioning_free:
|
||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
|
||||
else:
|
||||
cond_emb = self.contextual_embedder(conditioning_input)
|
||||
code_emb = self.latent_converter(aligned_latent)
|
||||
cond_emb = cond_emb.unsqueeze(-1).repeat(1,1,code_emb.shape[-1])
|
||||
code_emb = self.conditioning_conv(torch.cat([cond_emb, code_emb], dim=1))
|
||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||
if self.training and self.unconditioned_percentage > 0:
|
||||
unconditioned_batches = torch.rand((code_emb.shape[0],1,1), device=code_emb.device) < self.unconditioned_percentage
|
||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(x.shape[0], 1, 1), code_emb)
|
||||
|
||||
# Everything after this comment is timestep dependent.
|
||||
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb)
|
||||
|
||||
time_emb = time_emb.float()
|
||||
h = x
|
||||
for k, module in enumerate(self.input_blocks):
|
||||
if isinstance(module, nn.Conv1d):
|
||||
h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
|
||||
h = h + h_tok
|
||||
else:
|
||||
h = module(h, time_emb)
|
||||
hs.append(h)
|
||||
h = self.middle_block(h, time_emb)
|
||||
for module in self.output_blocks:
|
||||
h = torch.cat([h, hs.pop()], dim=1)
|
||||
h = module(h, time_emb)
|
||||
|
||||
# Last block also has autocast disabled for high-precision outputs.
|
||||
h = h.float()
|
||||
out = self.out(h)
|
||||
return out
|
||||
|
||||
|
||||
class DiffusionTtsWrapper(nn.Module):
|
||||
"""
|
||||
Wraps the above module with some set-up logic such that the above module can be traced by the PyTorch JIT.
|
||||
"""
|
||||
def __init__(self, jit_enabled=False, **kwargs):
|
||||
super().__init__()
|
||||
self.jit_enabled = jit_enabled
|
||||
self.jit_forward = None
|
||||
self.underlying = DiffusionTts(**kwargs)
|
||||
|
||||
def forward(self, x, timesteps, aligned_latent, conditioning_input, lr_input=None, conditioning_free=False):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
|
@ -408,75 +379,40 @@ class DiffusionTts(nn.Module):
|
|||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
assert conditioning_input is not None
|
||||
if self.super_sampling_enabled:
|
||||
if self.underlying.super_sampling_enabled:
|
||||
assert lr_input is not None
|
||||
if self.training and self.super_sampling_max_noising_factor > 0:
|
||||
noising_factor = random.uniform(0,self.super_sampling_max_noising_factor)
|
||||
noising_factor = random.uniform(0,self.underlying.super_sampling_max_noising_factor)
|
||||
lr_input = torch.randn_like(lr_input) * noising_factor + lr_input
|
||||
lr_input = F.interpolate(lr_input, size=(x.shape[-1],), mode='nearest')
|
||||
x = torch.cat([x, lr_input], dim=1)
|
||||
|
||||
with autocast(x.device.type, enabled=self.enable_fp16):
|
||||
# Shuffle aligned_latent to BxCxS format
|
||||
aligned_latent = aligned_latent.permute(0,2,1)
|
||||
# Shuffle aligned_latent to BxCxS format
|
||||
aligned_latent = aligned_latent.permute(0,2,1)
|
||||
|
||||
# Fix input size to the proper multiple of 2 so we don't get alignment errors going down and back up the U-net.
|
||||
orig_x_shape = x.shape[-1]
|
||||
cm = ceil_multiple(x.shape[-1], 2048)
|
||||
if cm != 0:
|
||||
pc = (cm-x.shape[-1])/x.shape[-1]
|
||||
x = F.pad(x, (0,cm-x.shape[-1]))
|
||||
# Also fix aligned_latent, which is aligned to x.
|
||||
aligned_latent = torch.cat([aligned_latent,
|
||||
self.aligned_latent_padding_embedding.repeat(x.shape[0],1,int(pc*aligned_latent.shape[-1]))], dim=-1)
|
||||
# Fix input size to the proper multiple of 2 so we don't get alignment errors going down and back up the U-net.
|
||||
orig_x_shape = x.shape[-1]
|
||||
cm = ceil_multiple(x.shape[-1], 2048)
|
||||
if cm != 0:
|
||||
pc = (cm-x.shape[-1])/x.shape[-1]
|
||||
x = F.pad(x, (0,cm-x.shape[-1]))
|
||||
# Also fix aligned_latent, which is aligned to x.
|
||||
aligned_latent = torch.cat([aligned_latent,
|
||||
self.underlying.aligned_latent_padding_embedding.repeat(x.shape[0],1,int(pc*aligned_latent.shape[-1]))], dim=-1)
|
||||
|
||||
hs = []
|
||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
|
||||
# Note: this block does not need to repeated on inference, since it is not timestep-dependent.
|
||||
if conditioning_free:
|
||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
|
||||
with autocast(x.device.type, enabled=self.underlying.enable_fp16):
|
||||
if self.jit_enabled:
|
||||
if self.jit_forward is None:
|
||||
self.jit_forward = torch.jit.script(self.underlying, (x, timesteps, aligned_latent, conditioning_input, conditioning_free))
|
||||
out = self.jit_forward(x, timesteps, aligned_latent, conditioning_input, conditioning_free)
|
||||
else:
|
||||
cond_emb = self.contextual_embedder(conditioning_input)
|
||||
code_emb = self.latent_converter(aligned_latent)
|
||||
cond_emb = cond_emb.unsqueeze(-1).repeat(1,1,code_emb.shape[-1])
|
||||
code_emb = self.conditioning_conv(torch.cat([cond_emb, code_emb], dim=1))
|
||||
code_emb = self.conditioning_encoder(code_emb)
|
||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||
if self.training and self.unconditioned_percentage > 0:
|
||||
unconditioned_batches = torch.rand((code_emb.shape[0],1,1), device=code_emb.device) < self.unconditioned_percentage
|
||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(x.shape[0], 1, 1), code_emb)
|
||||
|
||||
# Everything after this comment is timestep dependent.
|
||||
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb)
|
||||
|
||||
first = True
|
||||
time_emb = time_emb.float()
|
||||
h = x
|
||||
for k, module in enumerate(self.input_blocks):
|
||||
if isinstance(module, nn.Conv1d):
|
||||
h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
|
||||
h = h + h_tok
|
||||
else:
|
||||
with autocast(x.device.type, enabled=self.enable_fp16 and not first):
|
||||
# First block has autocast disabled to allow a high precision signal to be properly vectorized.
|
||||
h = module(h, time_emb)
|
||||
hs.append(h)
|
||||
first = False
|
||||
h = self.middle_block(h, time_emb)
|
||||
for module in self.output_blocks:
|
||||
h = torch.cat([h, hs.pop()], dim=1)
|
||||
h = module(h, time_emb)
|
||||
|
||||
# Last block also has autocast disabled for high-precision outputs.
|
||||
h = h.float()
|
||||
out = self.out(h)
|
||||
out = self.underlying(x, timesteps, aligned_latent, conditioning_input, conditioning_free)
|
||||
return out[:, :, :orig_x_shape]
|
||||
|
||||
|
||||
@register_model
|
||||
def register_diffusion_tts9(opt_net, opt):
|
||||
return DiffusionTts(**opt_net['kwargs'])
|
||||
return DiffusionTtsWrapper(**opt_net['kwargs'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -484,7 +420,7 @@ if __name__ == '__main__':
|
|||
aligned_latent = torch.randn(2,388,1024)
|
||||
cond = torch.randn(2, 1, 44000)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = DiffusionTts(128,
|
||||
model = DiffusionTtsWrapper(128,
|
||||
channel_mult=[1,1.5,2, 3, 4, 6, 8],
|
||||
num_res_blocks=[2, 2, 2, 2, 2, 2, 1],
|
||||
token_conditioning_resolutions=[1,4,16,64],
|
||||
|
|
Loading…
Reference in New Issue
Block a user