forked from mrq/DL-Art-School
BYOL!
Man, is there anything ExtensibleTrainer can't train? :)
This commit is contained in:
parent
5369cba8ed
commit
97ff25a086
|
@ -47,11 +47,10 @@ def create_dataset(dataset_opt):
|
||||||
from data.image_folder_dataset import ImageFolderDataset as D
|
from data.image_folder_dataset import ImageFolderDataset as D
|
||||||
elif mode == 'torch_dataset':
|
elif mode == 'torch_dataset':
|
||||||
from data.torch_dataset import TorchDataset as D
|
from data.torch_dataset import TorchDataset as D
|
||||||
|
elif mode == 'byol_dataset':
|
||||||
|
from data.byol_attachment import ByolDatasetWrapper as D
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode))
|
raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode))
|
||||||
dataset = D(dataset_opt)
|
dataset = D(dataset_opt)
|
||||||
|
|
||||||
logger = logging.getLogger('base')
|
|
||||||
logger.info('Dataset [{:s} - {:s}] is created.'.format(dataset.__class__.__name__,
|
|
||||||
dataset_opt['name']))
|
|
||||||
return dataset
|
return dataset
|
||||||
|
|
47
codes/data/byol_attachment.py
Normal file
47
codes/data/byol_attachment.py
Normal file
|
@ -0,0 +1,47 @@
|
||||||
|
import random
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
from kornia import augmentation as augs
|
||||||
|
from kornia import filters
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
# Wrapper for a DLAS Dataset class that applies random augmentations from the BYOL paper to BOTH the 'lq' and 'hq'
|
||||||
|
# inputs. These are then outputted as 'aug1' and 'aug2'.
|
||||||
|
from data import create_dataset
|
||||||
|
|
||||||
|
|
||||||
|
class RandomApply(nn.Module):
|
||||||
|
def __init__(self, fn, p):
|
||||||
|
super().__init__()
|
||||||
|
self.fn = fn
|
||||||
|
self.p = p
|
||||||
|
def forward(self, x):
|
||||||
|
if random.random() > self.p:
|
||||||
|
return x
|
||||||
|
return self.fn(x)
|
||||||
|
|
||||||
|
|
||||||
|
class ByolDatasetWrapper(Dataset):
|
||||||
|
def __init__(self, opt):
|
||||||
|
super().__init__()
|
||||||
|
self.wrapped_dataset = create_dataset(opt['dataset'])
|
||||||
|
self.cropped_img_size = opt['crop_size']
|
||||||
|
augmentations = [ \
|
||||||
|
RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
|
||||||
|
augs.RandomGrayscale(p=0.2),
|
||||||
|
augs.RandomHorizontalFlip(),
|
||||||
|
RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
|
||||||
|
augs.RandomResizedCrop((self.cropped_img_size, self.cropped_img_size))]
|
||||||
|
if opt['normalize']:
|
||||||
|
# The paper calls for normalization. Recommend setting true if you want exactly like the paper.
|
||||||
|
augmentations.append(augs.Normalize(mean=torch.tensor([0.485, 0.456, 0.406]), std=torch.tensor([0.229, 0.224, 0.225])))
|
||||||
|
self.aug = nn.Sequential(*augmentations)
|
||||||
|
|
||||||
|
def __getitem__(self, item):
|
||||||
|
item = self.wrapped_dataset[item]
|
||||||
|
item.update({'aug1': self.aug(item['hq']).squeeze(dim=0), 'aug2': self.aug(item['lq']).squeeze(dim=0)})
|
||||||
|
return item
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.wrapped_dataset)
|
237
codes/models/byol/byol_model_wrapper.py
Normal file
237
codes/models/byol/byol_model_wrapper.py
Normal file
|
@ -0,0 +1,237 @@
|
||||||
|
import copy
|
||||||
|
import random
|
||||||
|
from functools import wraps
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
from utils.util import checkpoint
|
||||||
|
|
||||||
|
|
||||||
|
def default(val, def_val):
|
||||||
|
return def_val if val is None else val
|
||||||
|
|
||||||
|
|
||||||
|
def flatten(t):
|
||||||
|
return t.reshape(t.shape[0], -1)
|
||||||
|
|
||||||
|
|
||||||
|
def singleton(cache_key):
|
||||||
|
def inner_fn(fn):
|
||||||
|
@wraps(fn)
|
||||||
|
def wrapper(self, *args, **kwargs):
|
||||||
|
instance = getattr(self, cache_key)
|
||||||
|
if instance is not None:
|
||||||
|
return instance
|
||||||
|
|
||||||
|
instance = fn(self, *args, **kwargs)
|
||||||
|
setattr(self, cache_key, instance)
|
||||||
|
return instance
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
return inner_fn
|
||||||
|
|
||||||
|
|
||||||
|
def get_module_device(module):
|
||||||
|
return next(module.parameters()).device
|
||||||
|
|
||||||
|
|
||||||
|
def set_requires_grad(model, val):
|
||||||
|
for p in model.parameters():
|
||||||
|
p.requires_grad = val
|
||||||
|
|
||||||
|
|
||||||
|
# loss fn
|
||||||
|
def loss_fn(x, y):
|
||||||
|
x = F.normalize(x, dim=-1, p=2)
|
||||||
|
y = F.normalize(y, dim=-1, p=2)
|
||||||
|
return 2 - 2 * (x * y).sum(dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
# exponential moving average
|
||||||
|
class EMA():
|
||||||
|
def __init__(self, beta):
|
||||||
|
super().__init__()
|
||||||
|
self.beta = beta
|
||||||
|
|
||||||
|
def update_average(self, old, new):
|
||||||
|
if old is None:
|
||||||
|
return new
|
||||||
|
return old * self.beta + (1 - self.beta) * new
|
||||||
|
|
||||||
|
|
||||||
|
def update_moving_average(ema_updater, ma_model, current_model):
|
||||||
|
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
|
||||||
|
old_weight, up_weight = ma_params.data, current_params.data
|
||||||
|
ma_params.data = ema_updater.update_average(old_weight, up_weight)
|
||||||
|
|
||||||
|
|
||||||
|
# MLP class for projector and predictor
|
||||||
|
class MLP(nn.Module):
|
||||||
|
def __init__(self, dim, projection_size, hidden_size=4096):
|
||||||
|
super().__init__()
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
nn.Linear(dim, hidden_size),
|
||||||
|
nn.BatchNorm1d(hidden_size),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.Linear(hidden_size, projection_size)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = flatten(x)
|
||||||
|
return self.net(x)
|
||||||
|
|
||||||
|
|
||||||
|
# A wrapper class for training against networks that do not collapse into a small-dimensioned latent.
|
||||||
|
class StructuralMLP(nn.Module):
|
||||||
|
def __init__(self, dim, projection_size, hidden_size=4096):
|
||||||
|
super().__init__()
|
||||||
|
b, c, h, w = dim
|
||||||
|
flattened_dim = c * h // 4 * w // 4
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=2),
|
||||||
|
nn.BatchNorm2d(c),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=2),
|
||||||
|
nn.BatchNorm2d(c),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.Flatten(),
|
||||||
|
nn.Linear(flattened_dim, hidden_size),
|
||||||
|
nn.BatchNorm1d(hidden_size),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.Linear(hidden_size, projection_size)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.net(x)
|
||||||
|
|
||||||
|
|
||||||
|
# a wrapper class for the base neural network
|
||||||
|
# will manage the interception of the hidden layer output
|
||||||
|
# and pipe it into the projecter and predictor nets
|
||||||
|
class NetWrapper(nn.Module):
|
||||||
|
def __init__(self, net, projection_size, projection_hidden_size, layer=-2, use_structural_mlp=False):
|
||||||
|
super().__init__()
|
||||||
|
self.net = net
|
||||||
|
self.layer = layer
|
||||||
|
|
||||||
|
self.projector = None
|
||||||
|
self.projection_size = projection_size
|
||||||
|
self.projection_hidden_size = projection_hidden_size
|
||||||
|
self.structural_mlp = use_structural_mlp
|
||||||
|
|
||||||
|
self.hidden = None
|
||||||
|
self.hook_registered = False
|
||||||
|
|
||||||
|
def _find_layer(self):
|
||||||
|
if type(self.layer) == str:
|
||||||
|
modules = dict([*self.net.named_modules()])
|
||||||
|
return modules.get(self.layer, None)
|
||||||
|
elif type(self.layer) == int:
|
||||||
|
children = [*self.net.children()]
|
||||||
|
return children[self.layer]
|
||||||
|
return None
|
||||||
|
|
||||||
|
def _hook(self, _, __, output):
|
||||||
|
self.hidden = output
|
||||||
|
|
||||||
|
def _register_hook(self):
|
||||||
|
layer = self._find_layer()
|
||||||
|
assert layer is not None, f'hidden layer ({self.layer}) not found'
|
||||||
|
handle = layer.register_forward_hook(self._hook)
|
||||||
|
self.hook_registered = True
|
||||||
|
|
||||||
|
@singleton('projector')
|
||||||
|
def _get_projector(self, hidden):
|
||||||
|
if self.structural_mlp:
|
||||||
|
projector = StructuralMLP(hidden.shape, self.projection_size, self.projection_hidden_size)
|
||||||
|
else:
|
||||||
|
_, dim = hidden.shape
|
||||||
|
projector = MLP(dim, self.projection_size, self.projection_hidden_size)
|
||||||
|
return projector.to(hidden)
|
||||||
|
|
||||||
|
def get_representation(self, x):
|
||||||
|
if self.layer == -1:
|
||||||
|
return self.net(x)
|
||||||
|
|
||||||
|
if not self.hook_registered:
|
||||||
|
self._register_hook()
|
||||||
|
|
||||||
|
unused = self.net(x)
|
||||||
|
hidden = self.hidden
|
||||||
|
self.hidden = None
|
||||||
|
assert hidden is not None, f'hidden layer {self.layer} never emitted an output'
|
||||||
|
return hidden
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
representation = self.get_representation(x)
|
||||||
|
projector = self._get_projector(representation)
|
||||||
|
projection = checkpoint(projector, representation)
|
||||||
|
return projection
|
||||||
|
|
||||||
|
|
||||||
|
class BYOL(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
net,
|
||||||
|
image_size,
|
||||||
|
hidden_layer=-2,
|
||||||
|
projection_size=256,
|
||||||
|
projection_hidden_size=4096,
|
||||||
|
moving_average_decay=0.99,
|
||||||
|
use_momentum=True,
|
||||||
|
structural_mlp=False
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.online_encoder = NetWrapper(net, projection_size, projection_hidden_size, layer=hidden_layer,
|
||||||
|
use_structural_mlp=structural_mlp)
|
||||||
|
|
||||||
|
self.use_momentum = use_momentum
|
||||||
|
self.target_encoder = None
|
||||||
|
self.target_ema_updater = EMA(moving_average_decay)
|
||||||
|
|
||||||
|
self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)
|
||||||
|
|
||||||
|
# get device of network and make wrapper same device
|
||||||
|
device = get_module_device(net)
|
||||||
|
self.to(device)
|
||||||
|
|
||||||
|
# send a mock image tensor to instantiate singleton parameters
|
||||||
|
self.forward(torch.randn(2, 3, image_size, image_size, device=device),
|
||||||
|
torch.randn(2, 3, image_size, image_size, device=device))
|
||||||
|
|
||||||
|
@singleton('target_encoder')
|
||||||
|
def _get_target_encoder(self):
|
||||||
|
target_encoder = copy.deepcopy(self.online_encoder)
|
||||||
|
set_requires_grad(target_encoder, False)
|
||||||
|
return target_encoder
|
||||||
|
|
||||||
|
def reset_moving_average(self):
|
||||||
|
del self.target_encoder
|
||||||
|
self.target_encoder = None
|
||||||
|
|
||||||
|
def update_for_step(self, step, __):
|
||||||
|
assert self.use_momentum, 'you do not need to update the moving average, since you have turned off momentum for the target encoder'
|
||||||
|
assert self.target_encoder is not None, 'target encoder has not been created yet'
|
||||||
|
update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder)
|
||||||
|
|
||||||
|
def forward(self, image_one, image_two):
|
||||||
|
online_proj_one = self.online_encoder(image_one)
|
||||||
|
online_proj_two = self.online_encoder(image_two)
|
||||||
|
|
||||||
|
online_pred_one = self.online_predictor(online_proj_one)
|
||||||
|
online_pred_two = self.online_predictor(online_proj_two)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
target_encoder = self._get_target_encoder() if self.use_momentum else self.online_encoder
|
||||||
|
target_proj_one = target_encoder(image_one).detach()
|
||||||
|
target_proj_two = target_encoder(image_two).detach()
|
||||||
|
|
||||||
|
loss_one = loss_fn(online_pred_one, target_proj_two.detach())
|
||||||
|
loss_two = loss_fn(online_pred_two, target_proj_one.detach())
|
||||||
|
|
||||||
|
loss = loss_one + loss_two
|
||||||
|
return loss.mean()
|
|
@ -21,6 +21,7 @@ from models.archs import srg2_classic
|
||||||
from models.archs.biggan.biggan_discriminator import BigGanDiscriminator
|
from models.archs.biggan.biggan_discriminator import BigGanDiscriminator
|
||||||
from models.archs.stylegan.Discriminator_StyleGAN import StyleGanDiscriminator
|
from models.archs.stylegan.Discriminator_StyleGAN import StyleGanDiscriminator
|
||||||
from models.archs.teco_resgen import TecoGen
|
from models.archs.teco_resgen import TecoGen
|
||||||
|
from utils.util import opt_get
|
||||||
|
|
||||||
logger = logging.getLogger('base')
|
logger = logging.getLogger('base')
|
||||||
|
|
||||||
|
@ -147,6 +148,14 @@ def define_G(opt, opt_net, scale=None):
|
||||||
elif which_model == 'igpt2':
|
elif which_model == 'igpt2':
|
||||||
from models.archs.transformers.igpt.gpt2 import iGPT2
|
from models.archs.transformers.igpt.gpt2 import iGPT2
|
||||||
netG = iGPT2(opt_net['embed_dim'], opt_net['num_heads'], opt_net['num_layers'], opt_net['num_pixels'] ** 2, opt_net['num_vocab'], centroids_file=opt_net['centroids_file'])
|
netG = iGPT2(opt_net['embed_dim'], opt_net['num_heads'], opt_net['num_layers'], opt_net['num_pixels'] ** 2, opt_net['num_vocab'], centroids_file=opt_net['centroids_file'])
|
||||||
|
elif which_model == 'byol':
|
||||||
|
from models.byol.byol_model_wrapper import BYOL
|
||||||
|
subnet = define_G(opt, opt_net['subnet'])
|
||||||
|
netG = BYOL(subnet, opt_net['image_size'], opt_net['hidden_layer'],
|
||||||
|
structural_mlp=opt_get(opt_net, ['use_structural_mlp'], False))
|
||||||
|
elif which_model == 'spinenet':
|
||||||
|
from models.archs.spinenet_arch import SpineNet
|
||||||
|
netG = SpineNet(str(opt_net['arch']), in_channels=3, use_input_norm=opt_net['use_input_norm'])
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model))
|
raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model))
|
||||||
return netG
|
return netG
|
||||||
|
|
34
recipes/byol/README.md
Normal file
34
recipes/byol/README.md
Normal file
|
@ -0,0 +1,34 @@
|
||||||
|
# Working with BYOL in DLAS
|
||||||
|
|
||||||
|
[BYOL](https://arxiv.org/abs/2006.07733) is a technique for pretraining an arbitrary image processing
|
||||||
|
neural network. It is built upon previous self-supervised architectures like SimCLR.
|
||||||
|
|
||||||
|
BYOL in DLAS is adapted from an implementation written by [lucidrains](https://github.com/lucidrains/byol-pytorch).
|
||||||
|
It is implemented via two wrappers:
|
||||||
|
|
||||||
|
1. A Dataset wrapper that augments the LQ and HQ inputs from a typical DLAS dataset. Since differentiable
|
||||||
|
augmentations don't actually matter for BYOL, it makes more sense (to me) to do this on the CPU at the
|
||||||
|
dataset layer, so your GPU can focus on processing gradients.
|
||||||
|
1. A model wrapper that attaches a small MLP to the end of your input network to produce a fixed
|
||||||
|
size latent. This latent is used to produce the BYOL loss which trains the master weights from
|
||||||
|
your network.
|
||||||
|
|
||||||
|
Thanks to the excellent implementation from lucidrains, this wrapping process makes training your
|
||||||
|
network on unsupervised datasets extremely easy.
|
||||||
|
|
||||||
|
Note: My intent is to adapt BYOL for use on structured models - e.g. models that do *not* collapse
|
||||||
|
the latent into a flat map. Stay tuned for that..
|
||||||
|
|
||||||
|
# Training BYOL
|
||||||
|
|
||||||
|
In this directory, you will find a sample training config for training BYOL on DIV2K. You will
|
||||||
|
likely want to insert your own model architecture first. Exchange out spinenet for your
|
||||||
|
model architecture and change the `hidden_layer` parameter to a layer from your network
|
||||||
|
that you want the BYOL model wrapper to hook into.
|
||||||
|
|
||||||
|
*hint: Your network architecture (including layer names) is printed out when running train.py
|
||||||
|
against your network.*
|
||||||
|
|
||||||
|
Run the trainer by:
|
||||||
|
|
||||||
|
`python train.py -opt train_div2k_byol.yml`
|
86
recipes/byol/train_div2k_byol.yml
Normal file
86
recipes/byol/train_div2k_byol.yml
Normal file
|
@ -0,0 +1,86 @@
|
||||||
|
#### general settings
|
||||||
|
name: train_div2k_byol
|
||||||
|
use_tb_logger: true
|
||||||
|
model: extensibletrainer
|
||||||
|
distortion: sr
|
||||||
|
scale: 1
|
||||||
|
gpu_ids: [0]
|
||||||
|
fp16: false
|
||||||
|
start_step: 0
|
||||||
|
checkpointing_enabled: true # <-- Highly recommended for single-GPU training. Will not work with DDP.
|
||||||
|
wandb: false
|
||||||
|
|
||||||
|
datasets:
|
||||||
|
train:
|
||||||
|
n_workers: 4
|
||||||
|
batch_size: 32
|
||||||
|
mode: byol_dataset
|
||||||
|
crop_size: 256
|
||||||
|
normalize: true
|
||||||
|
dataset:
|
||||||
|
mode: imagefolder
|
||||||
|
paths: /content/div2k # <-- Put your path here. Note: full images.
|
||||||
|
target_size: 256
|
||||||
|
scale: 1
|
||||||
|
|
||||||
|
networks:
|
||||||
|
generator:
|
||||||
|
type: generator
|
||||||
|
which_model_G: byol
|
||||||
|
image_size: 256
|
||||||
|
subnet: # <-- Specify your own network to pretrain here.
|
||||||
|
which_model_G: spinenet
|
||||||
|
arch: 49
|
||||||
|
use_input_norm: true
|
||||||
|
|
||||||
|
hidden_layer: endpoint_convs.4.conv # <-- Specify a hidden layer from your network here.
|
||||||
|
|
||||||
|
#### path
|
||||||
|
path:
|
||||||
|
#pretrain_model_generator: <insert pretrained model path if desired>
|
||||||
|
strict_load: true
|
||||||
|
#resume_state: ../experiments/train_div2k_byol/training_state/0.state # <-- Set this to resume from a previous training state.
|
||||||
|
|
||||||
|
steps:
|
||||||
|
generator:
|
||||||
|
training: generator
|
||||||
|
|
||||||
|
optimizer_params:
|
||||||
|
# Optimizer params
|
||||||
|
lr: !!float 3e-4
|
||||||
|
weight_decay: 0
|
||||||
|
beta1: 0.9
|
||||||
|
beta2: 0.99
|
||||||
|
|
||||||
|
injectors:
|
||||||
|
gen_inj:
|
||||||
|
type: generator
|
||||||
|
generator: generator
|
||||||
|
in: [aug1, aug2]
|
||||||
|
out: loss
|
||||||
|
|
||||||
|
losses:
|
||||||
|
byol_loss:
|
||||||
|
type: direct
|
||||||
|
key: loss
|
||||||
|
weight: 1
|
||||||
|
|
||||||
|
train:
|
||||||
|
niter: 500000
|
||||||
|
warmup_iter: -1
|
||||||
|
mega_batch_factor: 1 # <-- Gradient accumulation factor. If you are running OOM, increase this to [2,4,8].
|
||||||
|
val_freq: 2000
|
||||||
|
|
||||||
|
# Default LR scheduler options
|
||||||
|
default_lr_scheme: MultiStepLR
|
||||||
|
gen_lr_steps: [50000, 100000, 150000, 200000]
|
||||||
|
lr_gamma: 0.5
|
||||||
|
|
||||||
|
eval:
|
||||||
|
output_state: loss
|
||||||
|
|
||||||
|
logger:
|
||||||
|
print_freq: 30
|
||||||
|
save_checkpoint_freq: 1000
|
||||||
|
visuals: [hq, lq, aug1, aug2]
|
||||||
|
visual_debug_rate: 100
|
Loading…
Reference in New Issue
Block a user