forked from mrq/DL-Art-School
Add a new script for loading a discriminator network and using it to filter images
This commit is contained in:
parent
f5cd23e2d5
commit
9963b37200
75
codes/data_scripts/use_discriminator_as_filter.py
Normal file
75
codes/data_scripts/use_discriminator_as_filter.py
Normal file
|
@ -0,0 +1,75 @@
|
||||||
|
import os.path as osp
|
||||||
|
import logging
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
from collections import OrderedDict
|
||||||
|
|
||||||
|
import os
|
||||||
|
import options.options as option
|
||||||
|
import utils.util as util
|
||||||
|
from data.util import bgr2ycbcr
|
||||||
|
import models.archs.SwitchedResidualGenerator_arch as srg
|
||||||
|
from switched_conv_util import save_attention_to_image, save_attention_to_image_rgb
|
||||||
|
from switched_conv import compute_attention_specificity
|
||||||
|
from data import create_dataset, create_dataloader
|
||||||
|
from models import create_model
|
||||||
|
from tqdm import tqdm
|
||||||
|
import torch
|
||||||
|
import models.networks as networks
|
||||||
|
import shutil
|
||||||
|
import torchvision
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
bin_path = "f:\\binned"
|
||||||
|
good_path = "f:\\good"
|
||||||
|
os.makedirs(bin_path, exist_ok=True)
|
||||||
|
os.makedirs(good_path, exist_ok=True)
|
||||||
|
|
||||||
|
|
||||||
|
torch.backends.cudnn.benchmark = True
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../options/discriminator_filter.yml')
|
||||||
|
opt = option.parse(parser.parse_args().opt, is_train=False)
|
||||||
|
opt = option.dict_to_nonedict(opt)
|
||||||
|
opt['dist'] = False
|
||||||
|
|
||||||
|
util.mkdirs(
|
||||||
|
(path for key, path in opt['path'].items()
|
||||||
|
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
|
||||||
|
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
|
||||||
|
screen=True, tofile=True)
|
||||||
|
logger = logging.getLogger('base')
|
||||||
|
logger.info(option.dict2str(opt))
|
||||||
|
|
||||||
|
#### Create test dataset and dataloader
|
||||||
|
test_loaders = []
|
||||||
|
for phase, dataset_opt in sorted(opt['datasets'].items()):
|
||||||
|
test_set = create_dataset(dataset_opt)
|
||||||
|
test_loader = create_dataloader(test_set, dataset_opt, opt=opt)
|
||||||
|
logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set)))
|
||||||
|
test_loaders.append(test_loader)
|
||||||
|
|
||||||
|
model = create_model(opt)
|
||||||
|
fea_loss = 0
|
||||||
|
for test_loader in test_loaders:
|
||||||
|
test_set_name = test_loader.dataset.opt['name']
|
||||||
|
logger.info('\nTesting [{:s}]...'.format(test_set_name))
|
||||||
|
test_start_time = time.time()
|
||||||
|
dataset_dir = osp.join(opt['path']['results_root'], test_set_name)
|
||||||
|
util.mkdir(dataset_dir)
|
||||||
|
|
||||||
|
tq = tqdm(test_loader)
|
||||||
|
for data in tq:
|
||||||
|
model.feed_data(data, need_GT=True)
|
||||||
|
model.test()
|
||||||
|
results = model.eval_state['discriminator_out'][0]
|
||||||
|
for i in range(results.shape[0]):
|
||||||
|
imname = osp.basename(data['GT_path'][i])
|
||||||
|
if results[i] < 1:
|
||||||
|
torchvision.utils.save_image(data['GT'][i], osp.join(bin_path, imname))
|
||||||
|
else:
|
||||||
|
torchvision.utils.save_image(data['GT'][i], osp.join(good_path, imname))
|
||||||
|
|
||||||
|
# log
|
||||||
|
logger.info('# Validation # Fea: {:.4e}'.format(fea_loss / len(test_loader)))
|
|
@ -7,6 +7,8 @@ def create_injector(opt_inject, env):
|
||||||
type = opt_inject['type']
|
type = opt_inject['type']
|
||||||
if type == 'generator':
|
if type == 'generator':
|
||||||
return ImageGeneratorInjector(opt_inject, env)
|
return ImageGeneratorInjector(opt_inject, env)
|
||||||
|
elif type == 'discriminator':
|
||||||
|
return DiscriminatorInjector(opt_inject, env)
|
||||||
elif type == 'scheduled_scalar':
|
elif type == 'scheduled_scalar':
|
||||||
return ScheduledScalarInjector(opt_inject, env)
|
return ScheduledScalarInjector(opt_inject, env)
|
||||||
elif type == 'img_grad':
|
elif type == 'img_grad':
|
||||||
|
@ -60,6 +62,30 @@ class ImageGeneratorInjector(Injector):
|
||||||
return new_state
|
return new_state
|
||||||
|
|
||||||
|
|
||||||
|
# Injects a result from a discriminator network into the state.
|
||||||
|
class DiscriminatorInjector(Injector):
|
||||||
|
def __init__(self, opt, env):
|
||||||
|
super(DiscriminatorInjector, self).__init__(opt, env)
|
||||||
|
|
||||||
|
def forward(self, state):
|
||||||
|
d = self.env['discriminators'][self.opt['discriminator']]
|
||||||
|
if isinstance(self.input, list):
|
||||||
|
params = [state[i] for i in self.input]
|
||||||
|
results = d(*params)
|
||||||
|
else:
|
||||||
|
results = d(state[self.input])
|
||||||
|
new_state = {}
|
||||||
|
if isinstance(self.output, list):
|
||||||
|
# Only dereference tuples or lists, not tensors.
|
||||||
|
assert isinstance(results, list) or isinstance(results, tuple)
|
||||||
|
for i, k in enumerate(self.output):
|
||||||
|
new_state[k] = results[i]
|
||||||
|
else:
|
||||||
|
new_state[self.output] = results
|
||||||
|
|
||||||
|
return new_state
|
||||||
|
|
||||||
|
|
||||||
# Creates an image gradient from [in] and injects it into [out]
|
# Creates an image gradient from [in] and injects it into [out]
|
||||||
class ImageGradientInjector(Injector):
|
class ImageGradientInjector(Injector):
|
||||||
def __init__(self, opt, env):
|
def __init__(self, opt, env):
|
||||||
|
|
Loading…
Reference in New Issue
Block a user