Merge remote-tracking branch 'origin/gan_lab' into gan_lab

This commit is contained in:
James Betker 2020-10-19 15:26:11 -06:00
commit a63bf2ea2f
2 changed files with 11 additions and 2 deletions

View File

@ -71,6 +71,8 @@ class ChainedEmbeddingGenWithStructure(nn.Module):
self.recurrent = recurrent self.recurrent = recurrent
self.initial_conv = ConvGnLelu(3, 64, kernel_size=7, bias=True, norm=False, activation=False) self.initial_conv = ConvGnLelu(3, 64, kernel_size=7, bias=True, norm=False, activation=False)
if recurrent: if recurrent:
self.recurrent_nf = recurrent_nf
self.recurrent_stride = recurrent_stride
self.recurrent_process = ConvGnLelu(recurrent_nf, 64, kernel_size=3, stride=recurrent_stride, norm=False, bias=True, activation=False) self.recurrent_process = ConvGnLelu(recurrent_nf, 64, kernel_size=3, stride=recurrent_stride, norm=False, bias=True, activation=False)
self.recurrent_join = ReferenceJoinBlock(64, residual_weight_init_factor=.01, final_norm=False, kernel_size=1, depth=3, join=False) self.recurrent_join = ReferenceJoinBlock(64, residual_weight_init_factor=.01, final_norm=False, kernel_size=1, depth=3, join=False)
self.spine = SpineNet(arch='49', output_level=[3, 4], double_reduce_early=False) self.spine = SpineNet(arch='49', output_level=[3, 4], double_reduce_early=False)
@ -86,6 +88,11 @@ class ChainedEmbeddingGenWithStructure(nn.Module):
fea = self.initial_conv(x) fea = self.initial_conv(x)
if self.recurrent: if self.recurrent:
if recurrent is None: if recurrent is None:
if self.recurrent_nf == 3:
recurrent = torch.zeros_like(x)
if self.recurrent_stride != 1:
recurrent = torch.nn.functional.interpolate(recurrent, scale_factor=self.recurrent_stride, mode='nearest')
else:
recurrent = torch.zeros_like(fea) recurrent = torch.zeros_like(fea)
rec = self.recurrent_process(recurrent) rec = self.recurrent_process(recurrent)
fea, recstd = self.recurrent_join(fea, rec) fea, recstd = self.recurrent_join(fea, rec)

View File

@ -170,6 +170,8 @@ def main():
else: else:
current_step = -1 if 'start_step' not in opt.keys() else opt['start_step'] current_step = -1 if 'start_step' not in opt.keys() else opt['start_step']
start_epoch = 0 start_epoch = 0
if 'force_start_step' in opt.keys():
current_step = opt['force_start_step']
#### training #### training
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step)) logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))