diff --git a/codes/models/switched_conv.py b/codes/models/switched_conv.py
index 20c6925d..2e2677b7 100644
--- a/codes/models/switched_conv.py
+++ b/codes/models/switched_conv.py
@@ -63,6 +63,7 @@ class SwitchedConv(nn.Module):
             if selector is None:  # A coupler can convert from any input to a selector, so 'None' is allowed.
                 selector = inp
             selector = F.softmax(self.coupler(selector), dim=1)
+            self.last_select = selector.detach().clone()
             out_shape = [s // self.stride for s in inp.shape[2:]]
             if selector.shape[2] != out_shape[0] or selector.shape[3] != out_shape[1]:
                 selector = F.interpolate(selector, size=out_shape, mode="nearest")
diff --git a/codes/models/vqvae/vqvae_no_conv_transpose_switched_lambda.py b/codes/models/vqvae/vqvae_no_conv_transpose_switched_lambda.py
index 9037f24f..84c5170a 100644
--- a/codes/models/vqvae/vqvae_no_conv_transpose_switched_lambda.py
+++ b/codes/models/vqvae/vqvae_no_conv_transpose_switched_lambda.py
@@ -1,4 +1,7 @@
+import os
+
 import torch
+import torchvision
 from torch import nn
 from torch.nn import functional as F
 
@@ -172,6 +175,7 @@ class VQVAE(nn.Module):
     ):
         super().__init__()
 
+        self.breadth = breadth
         self.enc_b = Encoder(in_channel, channel, n_res_block, n_res_channel, stride=4, breadth=breadth)
         self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2, breadth=breadth)
         self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1)
@@ -200,6 +204,20 @@ class VQVAE(nn.Module):
 
         return dec, diff
 
+    def save_attention_to_image_rgb(self, output_file, attention_out, attention_size, cmap_discrete_name='viridis'):
+        from matplotlib import cm
+        magnitude, indices = torch.topk(attention_out, 3, dim=1)
+        indices = indices.cpu()
+        colormap = cm.get_cmap(cmap_discrete_name, attention_size)
+        img = torch.tensor(colormap(indices[:, 0, :, :].detach().numpy()))  # TODO: use other k's
+        img = img.permute((0, 3, 1, 2))
+        torchvision.utils.save_image(img, output_file)
+
+    def visual_dbg(self, step, path):
+        convs = [self.dec.blocks[-1].conv, self.dec_t.blocks[-1].conv, self.enc_b.blocks[-4], self.enc_t.blocks[-4]]
+        for i, c in enumerate(convs):
+            self.save_attention_to_image_rgb(os.path.join(path, "%i_selector_%i.png" % (step, i+1)), c.last_select, self.breadth)
+
     def encode(self, input):
         enc_b = checkpoint(self.enc_b, input)
         enc_t = checkpoint(self.enc_t, enc_b)