diff --git a/codes/scripts/audio/speech_synthesis_utils.py b/codes/scripts/audio/speech_synthesis_utils.py
new file mode 100644
index 00000000..c4339f5b
--- /dev/null
+++ b/codes/scripts/audio/speech_synthesis_utils.py
@@ -0,0 +1,80 @@
+import os
+import random
+
+import torch
+
+from data.audio.unsupervised_audio_dataset import load_audio
+from data.util import find_files_of_type, is_audio_file
+from models.diffusion.gaussian_diffusion import get_named_beta_schedule
+from models.diffusion.respace import SpacedDiffusion, space_timesteps
+from trainer.injectors.base_injectors import TorchMelSpectrogramInjector
+from utils.audio import plot_spectrogram
+
+
+def wav_to_mel(wav):
+    """
+    Converts an audio clip into a MEL tensor that the vocoder, DVAE and GptTts models use whenever a MEL is called for.
+    """
+    return TorchMelSpectrogramInjector({'in': 'wav', 'out': 'mel', 'normalize': True},{})({'wav': wav})['mel']
+
+
+def convert_mel_to_codes(dvae_model, mel):
+    """
+    Converts an audio clip into discrete codes.
+    """
+    dvae_model.eval()
+    with torch.no_grad():
+        return dvae_model.get_codebook_indices(mel)
+
+
+def load_gpt_conditioning_inputs_from_directory(path, num_candidates=3, sample_rate=22050, max_samples=44100):
+    candidates = find_files_of_type('img', os.path.dirname(path), qualifier=is_audio_file)[0]
+    assert len(candidates) < 50000  # Sanity check to ensure we aren't loading "related files" that aren't actually related.
+    if len(candidates) == 0:
+        print(f"No conditioning candidates found for {path} (not even the clip itself??)")
+        raise NotImplementedError()
+    # Sample with replacement. This can get repeats, but more conveniently handles situations where there are not enough candidates.
+    related_mels = []
+    for k in range(num_candidates):
+        rel_clip = load_audio(random.choice(candidates), sample_rate)
+        gap = rel_clip.shape[-1] - max_samples
+        if gap > 0:
+            rand_start = random.randint(0, gap)
+            rel_clip = rel_clip[:, rand_start:rand_start+max_samples]
+        as_mel = wav_to_mel(rel_clip)
+        related_mels.append(as_mel)
+    return torch.stack(related_mels, dim=0)
+
+
+def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200):
+    """
+    Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
+    """
+    return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
+                           model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps))
+
+
+def do_spectrogram_diffusion(diffusion_model, dvae_model, diffuser, mel_codes, conditioning_input, spectrogram_compression_factor=128, plt_spec=False, am=None):
+    """
+    Uses the specified diffusion model and DVAE model to convert the provided MEL & conditioning inputs into an audio clip.
+    """
+    diffusion_model.eval()
+    dvae_model.eval()
+    with torch.no_grad():
+        mel = dvae_model.decode(mel_codes)[0]
+
+        if plt_spec:
+            plot_spectrogram(mel[0].cpu())
+        m=mel[:,:,:am.shape[-1]]
+        print(torch.nn.MSELoss()(am,m))
+
+        # Pad MEL to multiples of 4096//spectrogram_compression_factor
+        msl = mel.shape[-1]
+        dsl = 4096 // spectrogram_compression_factor
+        gap = dsl - (msl % dsl)
+        if gap > 0:
+            mel = torch.nn.functional.pad(mel, (0, gap))
+
+        output_shape = (mel.shape[0], 1, mel.shape[-1] * spectrogram_compression_factor)
+        return diffuser.p_sample_loop(diffusion_model, output_shape, model_kwargs={'spectrogram': mel, 'conditioning_input': conditioning_input})
+
diff --git a/codes/scripts/audio/use_discrete_vocoder.py b/codes/scripts/audio/use_discrete_vocoder.py
new file mode 100644
index 00000000..db1f296f
--- /dev/null
+++ b/codes/scripts/audio/use_discrete_vocoder.py
@@ -0,0 +1,47 @@
+import argparse
+
+import torchaudio
+
+from data.audio.unsupervised_audio_dataset import load_audio
+from scripts.audio.speech_synthesis_utils import do_spectrogram_diffusion, \
+    load_discrete_vocoder_diffuser, wav_to_mel, convert_mel_to_codes
+from utils.audio import plot_spectrogram
+from utils.util import load_model_from_config
+
+
+def roundtrip_vocoding(dvae, vocoder, diffuser, clip, cond=None, plot_spec=False):
+    clip = clip.unsqueeze(0)
+    if cond is None:
+        cond = clip
+    else:
+        cond = cond.unsqueeze(0)
+    mel = wav_to_mel(clip)
+    if plot_spec:
+        plot_spectrogram(mel[0].cpu())
+    codes = convert_mel_to_codes(dvae, mel)
+    return do_spectrogram_diffusion(vocoder, dvae, diffuser, codes, cond, spectrogram_compression_factor=128, plt_spec=plot_spec, am=mel)
+
+
+if __name__ == '__main__':
+    parser = argparse.ArgumentParser()
+    parser.add_argument('-opt', type=str, help='Path to options YAML file used to train the diffusion model', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae.yml')
+    parser.add_argument('-diffusion_model_name', type=str, help='Name of the diffusion model in opt.', default='generator')
+    parser.add_argument('-diffusion_model_path', type=str, help='Name of the diffusion model in opt.', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae\\models\\6200_generator_ema.pth')
+    parser.add_argument('-dvae_model_name', type=str, help='Name of the DVAE model in opt.', default='dvae')
+    parser.add_argument('-input_file', type=str, help='Path to the input audio file.', default='Z:\\clips\\books1\\3_dchha04 Romancing The Tribes\\00036.wav')
+    parser.add_argument('-cond', type=str, help='Path to the conditioning input audio file.', default=None)
+    args = parser.parse_args()
+
+    print("Loading DVAE..")
+    dvae = load_model_from_config(args.opt, args.dvae_model_name)
+    print("Loading Diffusion Model..")
+    diffusion = load_model_from_config(args.opt, args.diffusion_model_name, also_load_savepoint=False, load_path=args.diffusion_model_path)
+
+    print("Loading data..")
+    diffuser = load_discrete_vocoder_diffuser()
+    inp = load_audio(args.input_file, 22050).cuda()
+    cond = None if args.cond is None else load_audio(args.cond, 22050).cuda()
+
+    print("Performing inference..")
+    roundtripped = roundtrip_vocoding(dvae, diffusion, diffuser, inp, cond).cpu()
+    torchaudio.save('roundtrip_vocoded_output.wav', roundtripped.squeeze(0), 10025)
\ No newline at end of file
diff --git a/codes/train.py b/codes/train.py
index 9475aa66..28211025 100644
--- a/codes/train.py
+++ b/codes/train.py
@@ -286,7 +286,7 @@ class Trainer:
 
 if __name__ == '__main__':
     parser = argparse.ArgumentParser()
-    parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_asr_mass_hf2.yml')
+    parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/validate_lrdvae_proper.yml')
     parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
     parser.add_argument('--local_rank', type=int, default=0)
     args = parser.parse_args()
diff --git a/codes/utils/util.py b/codes/utils/util.py
index 24961390..c21500d3 100644
--- a/codes/utils/util.py
+++ b/codes/utils/util.py
@@ -18,6 +18,9 @@ from torch.utils.checkpoint import checkpoint
 from torch._six import inf
 
 import yaml
+
+from trainer import networks
+
 try:
     from yaml import CLoader as Loader, CDumper as Dumper
 except ImportError:
@@ -460,4 +463,24 @@ def clip_grad_norm(parameters: list, parameter_names: list, max_norm: float, nor
     if clip_coef < 1:
         for p in parameters:
             p.grad.detach().mul_(clip_coef.to(p.grad.device))
-    return total_norm
\ No newline at end of file
+    return total_norm
+
+
+Loader, Dumper = OrderedYaml()
+def load_model_from_config(cfg_file, model_name=None, dev='cuda', also_load_savepoint=True, load_path=None):
+    with open(cfg_file, mode='r') as f:
+        opt = yaml.load(f, Loader=Loader)
+    if model_name is None:
+        model_cfg = opt['networks'].values()
+        model_name = next(opt['networks'].keys())
+    else:
+        model_cfg = opt['networks'][model_name]
+    if 'which_model_G' in model_cfg.keys() and 'which_model' not in model_cfg.keys():
+        model_cfg['which_model'] = model_cfg['which_model_G']
+    model = networks.create_model(opt, model_cfg).to(dev)
+    if also_load_savepoint and f'pretrain_model_{model_name}' in opt['path'].keys():
+        assert load_path is None
+        load_path = opt['path'][f'pretrain_model_{model_name}']
+    if load_path is not None:
+        model.load_state_dict(torch.load(load_path))
+    return model