diff --git a/codes/models/archs/SwitchedResidualGenerator_arch.py b/codes/models/archs/SwitchedResidualGenerator_arch.py index e587e296..27e77775 100644 --- a/codes/models/archs/SwitchedResidualGenerator_arch.py +++ b/codes/models/archs/SwitchedResidualGenerator_arch.py @@ -102,8 +102,8 @@ class MultiConvBlock(nn.Module): class HalvingProcessingBlock(nn.Module): def __init__(self, filters): super(HalvingProcessingBlock, self).__init__() - self.bnconv1 = ConvBnLelu(filters, filters * 2, stride=2, bn=False) - self.bnconv2 = ConvBnLelu(filters * 2, filters * 2, bn=True) + self.bnconv1 = ConvBnLelu(filters, filters * 2, stride=2, bn=False, bias=False) + self.bnconv2 = ConvBnLelu(filters * 2, filters * 2, bn=True, bias=False) def forward(self, x): x = self.bnconv1(x) @@ -116,7 +116,7 @@ def create_sequential_growing_processing_block(filters_init, filter_growth, num_ convs = [] current_filters = filters_init for i in range(num_convs): - convs.append(ConvBnLelu(current_filters, current_filters + filter_growth, bn=True)) + convs.append(ConvBnRelu(current_filters, current_filters + filter_growth, bn=True, bias=False)) current_filters += filter_growth return nn.Sequential(*convs), current_filters @@ -222,15 +222,15 @@ class ConfigurableSwitchComputer(nn.Module): class ConvBasisMultiplexer(nn.Module): def __init__(self, input_channels, base_filters, growth, reductions, processing_depth, multiplexer_channels, use_bn=True): super(ConvBasisMultiplexer, self).__init__() - self.filter_conv = ConvBnLelu(input_channels, base_filters) + self.filter_conv = ConvBnRelu(input_channels, base_filters, bias=True) self.reduction_blocks = nn.Sequential(OrderedDict([('block%i:' % (i,), HalvingProcessingBlock(base_filters * 2 ** i)) for i in range(reductions)])) reduction_filters = base_filters * 2 ** reductions self.processing_blocks, self.output_filter_count = create_sequential_growing_processing_block(reduction_filters, growth, processing_depth) gap = self.output_filter_count - multiplexer_channels - self.cbl1 = ConvBnLelu(self.output_filter_count, self.output_filter_count - (gap // 4), bn=use_bn) - self.cbl2 = ConvBnLelu(self.output_filter_count - (gap // 4), self.output_filter_count - (gap // 2), bn=use_bn) - self.cbl3 = ConvBnLelu(self.output_filter_count - (gap // 2), multiplexer_channels) + self.cbl1 = ConvBnRelu(self.output_filter_count, self.output_filter_count - (gap // 2), bn=use_bn, bias=False) + self.cbl2 = ConvBnRelu(self.output_filter_count - (gap // 2), self.output_filter_count - (3 * gap // 4), bn=use_bn, bias=False) + self.cbl3 = ConvBnRelu(self.output_filter_count - (3 * gap // 4), multiplexer_channels, bias=True) def forward(self, x): x = self.filter_conv(x) @@ -351,17 +351,14 @@ class ConfigurableSwitchedResidualGenerator2(nn.Module): switches = [] post_switch_proc = [] self.initial_conv = ConvBnLelu(3, transformation_filters, bn=False) - self.proc_conv = ConvBnLelu(transformation_filters, transformation_filters, bn=False) + self.proc_conv = ConvBnLelu(transformation_filters, transformation_filters, bn=False, bias=False) self.final_conv = ConvBnLelu(transformation_filters, 3, bn=False, lelu=False) for filters, growth, sw_reduce, sw_proc, trans_count, kernel, layers in zip(switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers): multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, filters, growth, sw_reduce, sw_proc, trans_count) switches.append(ConfigurableSwitchComputer(multiplx_fn, functools.partial(MultiConvBlock, transformation_filters, transformation_filters, transformation_filters, kernel_size=kernel, depth=layers), trans_count, initial_temp, enable_negative_transforms=enable_negative_transforms, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms)) post_switch_proc.append(ConvBnLelu(transformation_filters, transformation_filters, bn=False)) - initialize_weights(switches, 1) # Initialize the transforms with a lesser weight, since they are repeatedly added on to the resultant image. - initialize_weights([s.transforms for s in switches], .2 / len(switches)) self.switches = nn.ModuleList(switches) - initialize_weights([p for p in post_switch_proc], .01) self.post_switch_convs = nn.ModuleList(post_switch_proc) self.transformation_counts = trans_counts self.init_temperature = initial_temp @@ -382,14 +379,12 @@ class ConfigurableSwitchedResidualGenerator2(nn.Module): x = x + sw_out x = x + conv(x) - # This network is entirely a "repair" network and operates on full-resolution images. Upsample first if that - # is called for, then repair. if self.upsample_factor > 1: x = F.interpolate(x, scale_factor=self.upsample_factor, mode="nearest") x = self.proc_conv(x) x = self.final_conv(x) - return x, + return x / 13, def set_temperature(self, temp): [sw.set_temperature(temp) for sw in self.switches]