forked from mrq/DL-Art-School
Improve mdf
This commit is contained in:
parent
7b4dcbf136
commit
ba1699cee2
|
@ -84,6 +84,15 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
conditioning_free=True, conditioning_free_k=1)
|
conditioning_free=True, conditioning_free_k=1)
|
||||||
self.spec_decoder = get_mel2wav_v3_model() # The only reason the other functions don't use v3 is because earlier models were trained with v1 and I want to keep metrics consistent.
|
self.spec_decoder = get_mel2wav_v3_model() # The only reason the other functions don't use v3 is because earlier models were trained with v1 and I want to keep metrics consistent.
|
||||||
self.local_modules['spec_decoder'] = self.spec_decoder
|
self.local_modules['spec_decoder'] = self.spec_decoder
|
||||||
|
elif 'cheater_gen_fake_ar' == mode:
|
||||||
|
self.diffusion_fn = self.perform_fake_ar_reconstruction_from_cheater_gen
|
||||||
|
self.local_modules['cheater_encoder'] = get_cheater_encoder()
|
||||||
|
self.local_modules['cheater_decoder'] = get_cheater_decoder()
|
||||||
|
self.cheater_decoder_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon',
|
||||||
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
|
||||||
|
conditioning_free=True, conditioning_free_k=1)
|
||||||
|
self.spec_decoder = get_mel2wav_v3_model() # The only reason the other functions don't use v3 is because earlier models were trained with v1 and I want to keep metrics consistent.
|
||||||
|
self.local_modules['spec_decoder'] = self.spec_decoder
|
||||||
elif 'from_ar_prior' == mode:
|
elif 'from_ar_prior' == mode:
|
||||||
self.diffusion_fn = self.perform_diffusion_from_codes_ar_prior
|
self.diffusion_fn = self.perform_diffusion_from_codes_ar_prior
|
||||||
self.local_modules['cheater_encoder'] = get_cheater_encoder()
|
self.local_modules['cheater_encoder'] = get_cheater_encoder()
|
||||||
|
@ -223,21 +232,29 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
# 1. Generate the cheater latent using the input as a reference.
|
# 1. Generate the cheater latent using the input as a reference.
|
||||||
gen_cheater = self.diffuser.ddim_sample_loop(self.model, cheater.shape, progress=True, model_kwargs={'conditioning_input': cheater})
|
gen_cheater = self.diffuser.ddim_sample_loop(self.model, cheater.shape, progress=True, model_kwargs={'conditioning_input': cheater})
|
||||||
|
|
||||||
# 2. Decode the cheater into a MEL
|
# 2. Decode the cheater into a MEL. This operation and the next need to be chunked to make them feasible to perform within GPU memory.
|
||||||
gen_mel = self.cheater_decoder_diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,gen_cheater.shape[-1]*16), progress=True,
|
chunks = torch.split(gen_cheater, 64, dim=-1)
|
||||||
model_kwargs={'codes': gen_cheater.permute(0,2,1)})
|
gen_wavs = []
|
||||||
|
for chunk in tqdm(chunks):
|
||||||
|
gen_mel = self.cheater_decoder_diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,chunk.shape[-1]*16), progress=True,
|
||||||
|
model_kwargs={'codes': chunk.permute(0,2,1)})
|
||||||
|
|
||||||
# 3. And then the MEL back into a spectrogram
|
# 3. And then the MEL back into a spectrogram
|
||||||
output_shape = (1,16,audio.shape[-1]//16)
|
output_shape = (1,16,audio.shape[-1]//(16*len(chunks)))
|
||||||
self.spec_decoder = self.spec_decoder.to(audio.device)
|
self.spec_decoder = self.spec_decoder.to(audio.device)
|
||||||
gen_mel_denorm = denormalize_mel(gen_mel)
|
gen_mel_denorm = denormalize_mel(gen_mel)
|
||||||
gen_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
gen_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
||||||
model_kwargs={'codes': gen_mel_denorm})
|
model_kwargs={'codes': gen_mel_denorm})
|
||||||
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
||||||
|
gen_wavs.append(gen_wav)
|
||||||
|
gen_wav = torch.cat(gen_wavs, dim=-1)
|
||||||
|
|
||||||
real_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
if audio.shape[-1] < 40 * 22050:
|
||||||
model_kwargs={'codes': mel})
|
real_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
||||||
real_wav = pixel_shuffle_1d(real_wav, 16)
|
model_kwargs={'codes': mel})
|
||||||
|
real_wav = pixel_shuffle_1d(real_wav, 16)
|
||||||
|
else:
|
||||||
|
real_wav = audio # TODO: chunk like above.
|
||||||
|
|
||||||
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate
|
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate
|
||||||
|
|
||||||
|
@ -266,6 +283,87 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
|
|
||||||
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate
|
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate
|
||||||
|
|
||||||
|
def perform_fake_ar_reconstruction_from_cheater_gen(self, audio, sample_rate=22050):
|
||||||
|
assert self.ddim, "DDIM mode expected for reconstructing cheater gen. Do you like to waste resources??"
|
||||||
|
audio = audio.unsqueeze(0)
|
||||||
|
|
||||||
|
mel = self.spec_fn({'in': audio})['out']
|
||||||
|
mel_norm = normalize_mel(mel)
|
||||||
|
cheater = self.local_modules['cheater_encoder'].to(audio.device)(mel_norm)
|
||||||
|
|
||||||
|
# 1. Generate the cheater latent using the input as a reference.
|
||||||
|
def diffuse(i, ref):
|
||||||
|
mask = torch.zeros_like(ref)
|
||||||
|
mask[:,:,:i] = 1
|
||||||
|
return self.diffuser.p_sample_loop_with_guidance(self.model, ref, mask, model_kwargs={'conditioning_input': cheater})
|
||||||
|
gen_cheater = torch.randn_like(cheater)
|
||||||
|
for i in range(cheater.shape[-1]):
|
||||||
|
gen_cheater = diffuse(i, gen_cheater)
|
||||||
|
if i > 128:
|
||||||
|
# abort early.
|
||||||
|
gen_cheater = gen_cheater[:,:,:128]
|
||||||
|
break
|
||||||
|
|
||||||
|
# 2. Decode the cheater into a MEL. This operation and the next need to be chunked to make them feasible to perform within GPU memory.
|
||||||
|
chunks = torch.split(gen_cheater, 64, dim=-1)
|
||||||
|
gen_wavs = []
|
||||||
|
for chunk in tqdm(chunks):
|
||||||
|
gen_mel = self.cheater_decoder_diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,chunk.shape[-1]*16), progress=True,
|
||||||
|
model_kwargs={'codes': chunk.permute(0,2,1)})
|
||||||
|
|
||||||
|
# 3. And then the MEL back into a spectrogram
|
||||||
|
output_shape = (1,16,audio.shape[-1]//(16*len(chunks)))
|
||||||
|
self.spec_decoder = self.spec_decoder.to(audio.device)
|
||||||
|
gen_mel_denorm = denormalize_mel(gen_mel)
|
||||||
|
gen_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
||||||
|
model_kwargs={'codes': gen_mel_denorm})
|
||||||
|
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
||||||
|
gen_wavs.append(gen_wav)
|
||||||
|
gen_wav = torch.cat(gen_wavs, dim=-1)
|
||||||
|
|
||||||
|
""" How to do progressive, causal decoding of the TFD diffuser:
|
||||||
|
MAX_CONTEXT = 64
|
||||||
|
def diffuse(start, len, guidance):
|
||||||
|
mask = torch.zeros_like(guidance)
|
||||||
|
mask[:,:,:(len-start)] = 1
|
||||||
|
return self.cheater_decoder_diffuser.p_sample_loop_with_guidance(self.local_modules['cheater_decoder'].diff.to(audio.device),
|
||||||
|
guidance_input=guidance, mask=mask,
|
||||||
|
model_kwargs={'codes': gen_cheater[:,:,start:start+MAX_CONTEXT].permute(0,2,1)})
|
||||||
|
guidance_mel = torch.zeros((1,256,MAX_CONTEXT*16), device=mel.device)
|
||||||
|
gen_mel = torch.zeros((1,256,0), device=mel.device)
|
||||||
|
for i in tqdm(list(range(gen_cheater.shape[-1]))):
|
||||||
|
start = max(0, i-MAX_CONTEXT-1)
|
||||||
|
l = min(16*(MAX_CONTEXT-1), i*16)
|
||||||
|
ngm = diffuse(start, l, guidance_mel)
|
||||||
|
gen_mel = torch.cat([gen_mel, ngm[:,:,l:l+16]], dim=-1)
|
||||||
|
if gen_mel.shape[-1] < guidance_mel.shape[-1]:
|
||||||
|
guidance_mel[:,:,:gen_mel.shape[-1]] = gen_mel
|
||||||
|
else:
|
||||||
|
guidance_mel = gen_mel[:,:,-guidance_mel.shape[-1]:]
|
||||||
|
|
||||||
|
chunks = torch.split(gen_mel, MAX_CONTEXT*16, dim=-1)
|
||||||
|
gen_wavs = []
|
||||||
|
for chunk_mel in tqdm(chunks):
|
||||||
|
# 3. And then the MEL back into a spectrogram
|
||||||
|
output_shape = (1,16,audio.shape[-1]//(16*len(chunks)))
|
||||||
|
self.spec_decoder = self.spec_decoder.to(audio.device)
|
||||||
|
gen_mel_denorm = denormalize_mel(chunk_mel)
|
||||||
|
gen_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
||||||
|
model_kwargs={'codes': gen_mel_denorm})
|
||||||
|
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
||||||
|
gen_wavs.append(gen_wav)
|
||||||
|
gen_wav = torch.cat(gen_wavs, dim=-1)
|
||||||
|
"""
|
||||||
|
|
||||||
|
if audio.shape[-1] < 40 * 22050:
|
||||||
|
real_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
||||||
|
model_kwargs={'codes': mel})
|
||||||
|
real_wav = pixel_shuffle_1d(real_wav, 16)
|
||||||
|
else:
|
||||||
|
real_wav = audio # TODO: chunk like above.
|
||||||
|
|
||||||
|
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate
|
||||||
|
|
||||||
def project(self, sample, sample_rate):
|
def project(self, sample, sample_rate):
|
||||||
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
|
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
|
||||||
mel = self.spec_fn({'in': sample})['out']
|
mel = self.spec_fn({'in': sample})['out']
|
||||||
|
@ -302,7 +400,9 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
real_projections = []
|
real_projections = []
|
||||||
for i in tqdm(list(range(0, len(self.data), self.skip))):
|
for i in tqdm(list(range(0, len(self.data), self.skip))):
|
||||||
path = self.data[(i + self.env['rank']) % len(self.data)]
|
path = self.data[(i + self.env['rank']) % len(self.data)]
|
||||||
audio = load_audio(path, 22050).to(self.dev)
|
#audio = load_audio(path, 22050).to(self.dev)
|
||||||
|
audio = load_audio('C:\\Users\\James\\Music\\another_longer_sample.wav', 22050).to(self.dev) # <- hack, remove it!
|
||||||
|
audio = audio[:, :1764000]
|
||||||
if self.clip:
|
if self.clip:
|
||||||
audio = audio[:, :100000]
|
audio = audio[:, :100000]
|
||||||
sample, ref, sample_mel, ref_mel, sample_rate = self.diffusion_fn(audio)
|
sample, ref, sample_mel, ref_mel, sample_rate = self.diffusion_fn(audio)
|
||||||
|
@ -334,17 +434,17 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_tfd12_finetune_ar_outputs.yml', 'generator',
|
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_cheater_gen_r8.yml', 'generator',
|
||||||
also_load_savepoint=False,
|
also_load_savepoint=False,
|
||||||
load_path='X:\\dlas\\experiments\\train_music_diffusion_tfd12_finetune_from_cheater_ar\\models\\7500_generator.pth'
|
load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5\\models\\203000_generator_ema.pth'
|
||||||
).cuda()
|
).cuda()
|
||||||
opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
|
opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
|
||||||
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
|
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
|
||||||
'diffusion_steps': 32,
|
'diffusion_steps': 64,
|
||||||
'conditioning_free': True, 'conditioning_free_k': 1, 'use_ddim': True, # 'clip_audio': False,
|
'conditioning_free': True, 'conditioning_free_k': 1, 'use_ddim': True, 'clip_audio': False,
|
||||||
'diffusion_schedule': 'linear', 'diffusion_type': 'from_ar_prior',
|
'diffusion_schedule': 'linear', 'diffusion_type': 'cheater_gen_fake_ar',
|
||||||
#'partial_low': 128, 'partial_high': 192
|
#'partial_low': 128, 'partial_high': 192
|
||||||
}
|
}
|
||||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 230, 'device': 'cuda', 'opt': {}}
|
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 232, 'device': 'cuda', 'opt': {}}
|
||||||
eval = MusicDiffusionFid(diffusion, opt_eval, env)
|
eval = MusicDiffusionFid(diffusion, opt_eval, env)
|
||||||
print(eval.perform_eval())
|
print(eval.perform_eval())
|
||||||
|
|
Loading…
Reference in New Issue
Block a user