diff --git a/codes/options/train/train_vix_corrupt.yml b/codes/options/train/train_vix_corrupt.yml index eb9f22af..8ae35573 100644 --- a/codes/options/train/train_vix_corrupt.yml +++ b/codes/options/train/train_vix_corrupt.yml @@ -16,7 +16,7 @@ datasets: dataroot_LQ: G:\\data\\pr_upsample\\ultra_lowq\\for_training\\lr mismatched_Data_OK: true use_shuffle: true - n_workers: 0 # per GPU + n_workers: 12 # per GPU batch_size: 24 target_size: 64 use_flip: false @@ -37,7 +37,7 @@ network_G: nb_denoiser: 20 nb_upsampler: 0 upscale_applications: 0 - inject_noise: False + inject_noise: True network_D: which_model_D: discriminator_vgg_128 @@ -48,7 +48,7 @@ network_D: path: pretrain_model_G: ~ pretrain_model_D: ~ - resume_state: ../experiments/train_vix_corrupt/training_state/19000.state + resume_state: ../experiments/train_vix_corrupt/training_state/31000.state strict_load: true #### training settings: learning rate scheme, loss diff --git a/codes/options/train/train_ESRGAN_blacked_xl.yml b/codes/options/train/train_vix_resgenv2.yml similarity index 69% rename from codes/options/train/train_ESRGAN_blacked_xl.yml rename to codes/options/train/train_vix_resgenv2.yml index 5e44f3a2..2a6f41f0 100644 --- a/codes/options/train/train_ESRGAN_blacked_xl.yml +++ b/codes/options/train/train_vix_resgenv2.yml @@ -1,5 +1,5 @@ #### general settings -name: blacked_fix_and_upconv_xl +name: train_vix_resgenv2 use_tb_logger: true model: srgan distortion: sr @@ -13,11 +13,11 @@ datasets: name: vixcloseup mode: LQGT dataroot_GT: E:\4k6k\datasets\vixen\4k_closeup\hr - dataroot_LQ: [E:\4k6k\datasets\vixen\4k_closeup\lr_corrupted, E:\4k6k\datasets\vixen\4k_closeup\lr_c_blurred] + dataroot_LQ: E:\4k6k\datasets\vixen\4k_closeup\lr_corrupted doCrop: false use_shuffle: true - n_workers: 20 # per GPU - batch_size: 32 + n_workers: 0 # per GPU + batch_size: 8 target_size: 192 color: RGB val: @@ -28,28 +28,38 @@ datasets: #### network structures network_G: - which_model_G: ResGen - nf: 164 - nb_denoiser: 12 - nb_upsampler: 8 + which_model_G: ResGenV2 + nf: 256 + nb_denoiser: 20 + nb_upsampler: 10 + upscale_applications: 0 network_D: which_model_D: discriminator_resnet_passthrough - nf: 52 + nf: 64 +# LR corruption network. +network_C: + which_model_G: ResGenV2 + nf: 192 + nb_denoiser: 20 + nb_upsampler: 0 + upscale_applications: 0 + inject_noise: False #### path path: #pretrain_model_G: ../experiments/pretrained_resnet_G.pth #pretrain_model_D: ~ + pretrain_model_C: ../experiments/pretrained_corruptors/resgen_xl_noise_19000.pth strict_load: true - resume_state: ../experiments/blacked_fix_and_upconv_xl/training_state/68000.state + resume_state: ~ #### training settings: learning rate scheme, loss train: - lr_G: !!float 6e-5 + lr_G: !!float 1e-4 weight_decay_G: 0 beta1_G: 0.9 beta2_G: 0.99 - lr_D: !!float 6e-5 + lr_D: !!float 1e-4 weight_decay_D: 0 beta1_D: 0.9 beta2_D: 0.99 @@ -62,14 +72,14 @@ train: mega_batch_factor: 2 pixel_criterion: l1 - pixel_weight: !!float 1e-2 + pixel_weight: .01 feature_criterion: l1 feature_weight: 1 feature_weight_decay: 1 feature_weight_decay_steps: 500 feature_weight_minimum: 1 gan_type: gan # gan | ragan - gan_weight: !!float 1e-2 + gan_weight: .01 D_update_ratio: 1 D_init_iters: 0