diff --git a/codes/scripts/audio/preparation/phase3_generate_similarities.py b/codes/scripts/audio/preparation/phase3_generate_similarities.py index 67e87a6a..5b4d1772 100644 --- a/codes/scripts/audio/preparation/phase3_generate_similarities.py +++ b/codes/scripts/audio/preparation/phase3_generate_similarities.py @@ -1,6 +1,7 @@ import argparse import functools import os +import sys from multiprocessing.pool import ThreadPool import torch @@ -54,13 +55,17 @@ def process_subdir(subdir, options, clip_sz): clips = [] for path in paths: - clip = load_audio(str(path), 22050) - padding = clip_sz - clip.shape[1] - if padding > 0: - clip = F.pad(clip, (0, padding)) - elif padding < 0: - clip = clip[:, :clip_sz] - clips.append(clip) + try: + clip = load_audio(str(path), 22050) + padding = clip_sz - clip.shape[1] + if padding > 0: + clip = F.pad(clip, (0, padding)) + elif padding < 0: + clip = clip[:, :clip_sz] + clips.append(clip) + except: + print(f"Error processing {path}. Recovering gracefully.") + print(sys.exc_info()) sims = None while len(clips) > 0: stacked = torch.stack(clips[:256], dim=0).cuda() @@ -101,7 +106,7 @@ if __name__ == '__main__': """ parser = argparse.ArgumentParser() parser.add_argument('-o', type=str, help='Path to the options YAML file used to train the CLIP model', default='../options/train_voice_voice_clip.yml') - parser.add_argument('--num_workers', type=int, help='Number concurrent processes to use', default=6) + parser.add_argument('--num_workers', type=int, help='Number concurrent processes to use', default=2) parser.add_argument('--root_path', type=str, help='Root path to search for audio directories from', default='Y:\\filtered\\big_podcast') parser.add_argument('--clip_size', type=int, help='Amount of audio samples to pull from each file', default=22050) args = parser.parse_args() diff --git a/codes/trainer/eval/flow_gaussian_nll.py b/codes/trainer/eval/flow_gaussian_nll.py index 42d72f36..c08f0e37 100644 --- a/codes/trainer/eval/flow_gaussian_nll.py +++ b/codes/trainer/eval/flow_gaussian_nll.py @@ -6,7 +6,7 @@ import trainer.eval.evaluator as evaluator # Evaluate how close to true Gaussian a flow network predicts in a "normal" pass given a LQ/HQ image pair. from data.images.image_folder_dataset import ImageFolderDataset -from models.image_generation.srflow import GaussianDiag +from models.image_generation.srflow.flow import GaussianDiag class FlowGaussianNll(evaluator.Evaluator): diff --git a/codes/trainer/eval/single_point_pair_contrastive_eval.py b/codes/trainer/eval/single_point_pair_contrastive_eval.py index 2b16e509..c5b06fa2 100644 --- a/codes/trainer/eval/single_point_pair_contrastive_eval.py +++ b/codes/trainer/eval/single_point_pair_contrastive_eval.py @@ -6,7 +6,6 @@ from tqdm import tqdm import trainer.eval.evaluator as evaluator from data.images.image_pair_with_corresponding_points_dataset import ImagePairWithCorrespondingPointsDataset -from models.segformer.segformer import Segformer # Uses two datasets: a "similar" and "dissimilar" dataset, each of which contains pairs of images and similar/dissimilar