From d1de94d75cb1077f37a0680c1962c2300e383538 Mon Sep 17 00:00:00 2001 From: James Betker Date: Tue, 17 May 2022 12:35:01 -0600 Subject: [PATCH] Stash mel2vec work (gonna throw it all away..) --- codes/models/audio/mel2vec.py | 542 ++++++++++++++++++++++++++++++++++ 1 file changed, 542 insertions(+) create mode 100644 codes/models/audio/mel2vec.py diff --git a/codes/models/audio/mel2vec.py b/codes/models/audio/mel2vec.py new file mode 100644 index 00000000..95d7997e --- /dev/null +++ b/codes/models/audio/mel2vec.py @@ -0,0 +1,542 @@ +import math +from typing import Optional, Tuple + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from transformers.deepspeed import is_deepspeed_zero3_enabled + + +class Mel2Vec2FeatureProjection(nn.Module): + def __init__(self, inner_dim, dropout): + super().__init__() + self.layer_norm = nn.LayerNorm(inner_dim, eps=1e-5) + self.projection = nn.Linear(inner_dim, inner_dim) + self.dropout = nn.Dropout(dropout) + + def forward(self, hidden_states): + # non-projected hidden states are needed for quantization + norm_hidden_states = self.layer_norm(hidden_states) + hidden_states = self.projection(norm_hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states, norm_hidden_states + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Wav2Vec2 +class Wav2Vec2Attention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned aross GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class Wav2Vec2FeedForward(nn.Module): + def __init__(self, hidden_size, intermediate_size, dropout): + super().__init__() + self.intermediate_dropout = nn.Dropout(dropout) + + self.intermediate_dense = nn.Linear(hidden_size, intermediate_size) + self.intermediate_act_fn = F.gelu + + self.output_dense = nn.Linear(intermediate_size, hidden_size) + self.output_dropout = nn.Dropout(dropout) + + def forward(self, hidden_states): + hidden_states = self.intermediate_dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + hidden_states = self.intermediate_dropout(hidden_states) + + hidden_states = self.output_dense(hidden_states) + hidden_states = self.output_dropout(hidden_states) + return hidden_states + + +class Wav2Vec2EncoderLayer(nn.Module): + def __init__(self, hidden_size, dropout): + super().__init__() + self.attention = Wav2Vec2Attention( + embed_dim=hidden_size, + num_heads=hidden_size//64, + dropout=dropout, + is_decoder=False, + ) + self.dropout = nn.Dropout(dropout) + self.layer_norm = nn.LayerNorm(hidden_size, eps=1e-5) + self.feed_forward = Wav2Vec2FeedForward(hidden_size, hidden_size*2, dropout) + self.final_layer_norm = nn.LayerNorm(hidden_size, eps=1e-5) + + def forward(self, hidden_states, attention_mask=None, output_attentions=False): + attn_residual = hidden_states + hidden_states, attn_weights, _ = self.attention( + hidden_states, attention_mask=attention_mask, output_attentions=output_attentions + ) + hidden_states = self.dropout(hidden_states) + hidden_states = attn_residual + hidden_states + + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states + self.feed_forward(hidden_states) + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class Wav2Vec2SamePadLayer(nn.Module): + def __init__(self, num_conv_pos_embeddings): + super().__init__() + self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 + + def forward(self, hidden_states): + if self.num_pad_remove > 0: + hidden_states = hidden_states[:, :, : -self.num_pad_remove] + return hidden_states + + +class Wav2Vec2PositionalConvEmbedding(nn.Module): + def __init__(self, hidden_size, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16): + super().__init__() + self.conv = nn.Conv1d( + hidden_size, + hidden_size, + kernel_size=num_conv_pos_embeddings, + padding=num_conv_pos_embeddings // 2, + groups=num_conv_pos_embedding_groups, + ) + + if is_deepspeed_zero3_enabled(): + import deepspeed + + with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): + self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) + deepspeed.zero.register_external_parameter(self, self.conv.weight_v) + deepspeed.zero.register_external_parameter(self, self.conv.weight_g) + else: + self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) + + self.padding = Wav2Vec2SamePadLayer(num_conv_pos_embeddings) + self.activation = F.gelu + + def forward(self, hidden_states): + hidden_states = hidden_states.transpose(1, 2) + + hidden_states = self.conv(hidden_states) + hidden_states = self.padding(hidden_states) + hidden_states = self.activation(hidden_states) + + hidden_states = hidden_states.transpose(1, 2) + return hidden_states + + +class Wav2Vec2Encoder(nn.Module): + def __init__(self, hidden_size, dropout, num_layers, layerdrop): + super().__init__() + self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(hidden_size) + self.layer_norm = nn.LayerNorm(hidden_size, eps=1e-5) + self.dropout = nn.Dropout(dropout) + self.layers = nn.ModuleList([Wav2Vec2EncoderLayer(hidden_size, dropout) for _ in range(num_layers)]) + self.gradient_checkpointing = False + self.layerdrop = layerdrop + + def forward( + self, + hidden_states, + attention_mask=None, + output_attentions=False, + output_hidden_states=False, + ): + all_hidden_states = () if output_hidden_states else None + + if attention_mask is not None: + # make sure padded tokens output 0 + hidden_states[~attention_mask] = 0.0 + + # extend attention_mask + attention_mask = (1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)) * -10000.0 + attention_mask = attention_mask.expand( + attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] + ) + + position_embeddings = self.pos_conv_embed(hidden_states) + hidden_states = hidden_states + position_embeddings + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states) + + deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() + + for layer in self.layers: + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = np.random.uniform(0, 1) + + skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False + if not skip_the_layer or deepspeed_zero3_is_enabled: + # under deepspeed zero3 all gpus must run in sync + if self.gradient_checkpointing and self.training: + # create gradient checkpointing function + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs, output_attentions) + + return custom_forward + + layer_outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(layer), + hidden_states, + attention_mask, + ) + else: + layer_outputs = layer( + hidden_states, attention_mask=attention_mask, output_attentions=output_attentions + ) + hidden_states = layer_outputs[0] + + return hidden_states + + +class Mel2Vec(nn.Module): + def __init__(self, + mel_input_channels=256, + inner_dim=1024, + layers=24, + dropout=.1, + layerdrop=0, + mask_time_prob=.65, + mask_time_length=10): + self.input_blocks = nn.Sequential(nn.Conv1d(mel_input_channels, inner_dim//2, kernel_size=5, padding=2, stride=2), + nn.GroupNorm(num_groups=8, num_channels=inner_dim, affine=True), + nn.SiLU(), + nn.Conv1d(inner_dim//2, inner_dim, kernel_size=3, padding=1, stride=2), + nn.GroupNorm(num_groups=8, num_channels=inner_dim, affine=True), + nn.SiLU(), + ) + self.projector = Wav2Vec2FeatureProjection(inner_dim, dropout) + self.masked_spec_embed = nn.Parameter(torch.rand(inner_dim,)) + self.encoder = Wav2Vec2Encoder(inner_dim, dropout, layers, layerdrop) + self.apply(self.init) + + def init(self, module): + """Initialize the weights""" + # gumbel softmax requires special init + if isinstance(module, Wav2Vec2PositionalConvEmbedding): + nn.init.normal_( + module.conv.weight, + mean=0, + std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), + ) + nn.init.constant_(module.conv.bias, 0) + elif isinstance(module, Wav2Vec2FeatureProjection): + k = math.sqrt(1 / module.projection.in_features) + nn.init.uniform_(module.projection.weight, a=-k, b=k) + nn.init.uniform_(module.projection.bias, a=-k, b=k) + elif isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, nn.Conv1d): + nn.init.kaiming_normal_(module.weight) + if module.bias is not None: + k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) + nn.init.uniform_(module.bias, a=-k, b=k) + + def apply_masking( + self, + hidden_states: torch.FloatTensor, + mask_time_indices: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + ): + """ + Masks extracted features along time axis and/or along feature axis according to + [SpecAugment](https://arxiv.org/abs/1904.08779). + """ + + # `config.apply_spec_augment` can set masking to False + if not getattr(self.config, "apply_spec_augment", True): + return hidden_states + + # generate indices & apply SpecAugment along time axis + batch_size, sequence_length, hidden_size = hidden_states.size() + + if mask_time_indices is not None: + # apply SpecAugment along time axis with given mask_time_indices + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + elif self.config.mask_time_prob > 0 and self.training: + mask_time_indices = _compute_mask_indices( + (batch_size, sequence_length), + mask_prob=self.config.mask_time_prob, + mask_length=self.config.mask_time_length, + attention_mask=attention_mask, + min_masks=self.config.mask_time_min_masks, + ) + mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + + if self.config.mask_feature_prob > 0 and self.training: + # generate indices & apply SpecAugment along feature axis + mask_feature_indices = _compute_mask_indices( + (batch_size, hidden_size), + mask_prob=self.config.mask_feature_prob, + mask_length=self.config.mask_feature_length, + min_masks=self.config.mask_feature_min_masks, + ) + mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) + mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) + hidden_states[mask_feature_indices] = 0 + + return hidden_states + + def forward(self, mel): + proj = self.input_blocks(mel).permute(0,2,1) + proj, _ = self.projector(proj) + + # Mask projections + h = self.apply_masking(proj, mask_time_indices) + h = self.encoder(h) + return h + + +class Wav2Vec2GumbelVectorQuantizer(nn.Module): + """ + Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH + GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. + """ + + def __init__(self, proj_dim=1024, codevector_dim=256, num_codevector_groups=2, num_codevectors_per_group=320): + super().__init__() + self.codevector_dim = codevector_dim + self.num_groups = num_codevector_groups + self.num_vars = num_codevectors_per_group + + if codevector_dim % self.num_groups != 0: + raise ValueError( + f"`config.codevector_dim {config.codevector_dim} must be divisible " + f"by `config.num_codevector_groups` {self.num_groups} for concatenation" + ) + + # storage for codebook variables (codewords) + self.codevectors = nn.Parameter( + torch.FloatTensor(1, self.num_groups * self.num_vars, codevector_dim // self.num_groups) + ) + self.weight_proj = nn.Linear(proj_dim, self.num_groups * self.num_vars) + + # can be decayed for training + self.temperature = 2 + + # Parameters init. + self.weight_proj.weight.data.normal_(mean=0.0, std=1) + self.weight_proj.bias.data.zero_() + nn.init.uniform_(self.codevectors) + + @staticmethod + def _compute_perplexity(probs, mask=None): + if mask is not None: + mask_extended = mask.flatten()[:, None, None].expand(probs.shape) + probs = torch.where(mask_extended, probs, torch.zeros_like(probs)) + marginal_probs = probs.sum(dim=0) / mask.sum() + else: + marginal_probs = probs.mean(dim=0) + + perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() + return perplexity + + def forward(self, hidden_states, mask_time_indices=None): + batch_size, sequence_length, hidden_size = hidden_states.shape + + # project to codevector dim + hidden_states = self.weight_proj(hidden_states) + hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) + + if self.training: + # sample code vector probs via gumbel in differentiateable way + codevector_probs = nn.functional.gumbel_softmax( + hidden_states.float(), tau=self.temperature, hard=True + ).type_as(hidden_states) + + # compute perplexity + codevector_soft_dist = torch.softmax( + hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 + ) + perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices) + else: + # take argmax in non-differentiable way + # comptute hard codevector distribution (one hot) + codevector_idx = hidden_states.argmax(dim=-1) + codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_( + -1, codevector_idx.view(-1, 1), 1.0 + ) + codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) + + perplexity = self._compute_perplexity(codevector_probs, mask_time_indices) + + codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) + # use probs to retrieve codevectors + codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors + codevectors = ( + codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) + .sum(-2) + .view(batch_size, sequence_length, -1) + ) + + return codevectors, perplexity + + +class ContrastiveTrainingWrapper(nn.Module): + def __init__(self, **kwargs): + super().__init__() + self.m2v = Mel2Vec(**kwargs) + self.dropout_features = nn.Dropout(kwargs['dropout']) + + self.quantizer = Wav2Vec2GumbelVectorQuantizer(kwargs['inner_dim']) + + # make sure that project_hid & project_q are initialized like normal linear layers + self.project_hid = nn.Linear(kwargs['inner_dim'], self.quantizer.codevector_dim) + self.project_q = nn.Linear(self.quantizer.codevector_dim, self.quantizer.codevector_dim) + + def forward(self, mel): + pass \ No newline at end of file